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Abstract

Background: Oncogenic activation of the PI3K signalling pathway plays a pivotal role in the development of glioblastoma
multiforme (GBM). A central node in PI3K downstream signalling is controlled by the serine-threonine kinase AKT1. A
somatic mutation affecting residue E17 of the AKT1 gene has recently been identified in breast and colon cancer. The E17K
change results in constitutive AKT1 activation, induces leukaemia in mice, and accordingly, may be therapeutically exploited
to target the PI3K pathway. Assessing whether AKT1 is activated by somatic mutations in GBM is relevant to establish its role
in this aggressive disease.

Methodology/Principal Findings: We performed a systematic mutational analysis of the complete coding sequence of the
AKT1 gene in a panel of 109 tumor GBM samples and nine high grade astrocytoma cell lines. However, no somatic
mutations were detected in the coding region of AKT1.

Conclusions/Significance: Our data indicate that in GBM oncogenic deregulation of the PI3K pathway does not involve
somatic mutations in the coding region of AKT1.
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Introduction

A number of genetic and functional evidences have unequiv-

ocally established the importance of the PI3K pathway in human

cancer [1,2]. For example oncogenic deregulation of the PI3K

pathway plays a central role in the development of Glioblastoma

Multiforme (GBM) as shown by the fact that many of its members

are genetically altered [3,4]. Two main regulators, the lipid kinase

PIK3CA and the lipid phosphatase PTEN, control this signalling

pathway. We and other have shown that the PIK3CA gene is

mutated in many tumour types, including GBM [4–7]. The

corresponding mutations result in activation of the PI3K catalytic

activity and constitutive downstream signalling. The tumour

suppressor gene PTEN encodes for a lipid phopshatase which

counteracts the effect of PI3K thus negatively controlling

signalling. PTEN is mutationally and transcriptionally inactivated

in many different tumour types, including GBM [8]. In most

tumour lineages, including GBMs PIK3CA and PTEN mutations

occur in a mutually exclusive manner [6,9]. This suggests that they

exert overlapping cellular functions, and in fact, both control the

cellular levels of phosphatidylinositol-3-phosphate (PIP3) [10,11].

Other mechanisms of activation of the PI3K pathway include

alterations in tyrosine kinase receptors acting upstream in the

signalling cascade. This is the case for the receptor tyrosine kinase

EGFR which can be activated by gene amplification and/or

mutations [12]. Both missense point mutations and large

extracellular domain deletions (EGFRvIII, which due to alternative

splicing misses exon 2–7) affecting the EGFR gene have been

reported at considerable frequency in GBM and result in

constitutive activation of the receptor and of the underlying

PI3K pathway [12].

Downstream in the signaling cascade, PI3K and PTEN control

PIP3, which activates downstream effector molecules, such as the

serine-threonine kinase AKT. A recent sequencing study led to the

identification of oncogenic somatic mutations in the pleckstrin

homology domain of AKT1 in breast, colon and ovarian cancer

[13]. Interestingly, in all cases examined the same mutation E17K

was identified. This mutation alters the electrostatic interactions of

the pocket and constitutively activates AKT1 in a PI3K-

independent manner. By this mechanism, it transforms rodent cells

in vitro and can induce leukaemia in mice [13]. Recently, we and

others assessed the mutational status of the E17K mutation in

different tumor types [14–17], confirming the mutations in breast

and colon, and most interestingly revealing mutations in lung cancer
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[14,15]. On the contrary, we did not detect any mutations affecting

the hotspot residue E17 in a panel of 128 GBMs [15]. We noted

that, GBMs do exhibit a different mutation spectrum for some genes

compared to other tumor types. For example, most EGFR and

ERBB2 mutations in lung cancer are found in the kinase domain

[18,19], whereas these genes are predominantly mutated in the

extracellular domain in GBM [12,20]. This led us to speculate that

GBMs might bear mutations in other regions of the AKT1 gene. To

definitively assess this hypothesis, we successfully sequenced the

complete coding sequence of AKT1 in 109 GBM tumor samples and

nine high grade astrocytoma cell lines.

Results and Discussion

We sequenced the complete coding sequence of the AKT1 gene in

a set of 109 GBM tumors and 9 high grade astrocytoma cell lines.

Primers were designed to amplify and sequence the genomic region

corresponding to all coding exons of AKT1, including exon 4, where

the E17K residue is located. Amplicons included at least 15 intronic

bases at both the 59 and 39 ends encompassing the splicing donor

and acceptor sites. A total of 1535 PCR products, spanning 628 kb

of tumour genomic DNA, were generated and subjected to direct

sequencing. Sequencing was performed single stranded with either

forward or reverser primer. Identified changes were independently

confirmed by another round of PCR and sequencing.

Previous work focusing on the mutational analysis of exon 4 did

not identify any E17K mutation in 128 GBM samples [15].

Importantly, we extended the mutational analysis for these tumors

to all other coding exons of AKT1, but no somatic mutations were

found.

Our tumor set was validated by previous mutational profiling of

common cancer genes, including the IDH1 gene [21]. Further-

more, we found a number of previous reported SNPs in our

samples (rs17846822, rs34664585, rs3730358, rs3730368,

rs2494737, rs2494735, rs34670300, rs3730361, rs3730329,

rs3730329, rs2494732). In addition, we identified three novel

germline changes (IVS8-12C.T, R200H and W333*) at low

frequency, they were found only once in different samples. Our

work is focused on somatic mutations and therefore, we did not

study these changes in further detail.

While previous studies have focused mainly on the hotspot

mutation site AKT1E17or the serine and threonine phosphorylation

sites [3,15,17], this work is the first to show in a large panel of

GBMs that the coding sequence of the AKT1 is not somatically

mutated in this tumour lineage. Although the promoter region

and/or the 59 and 39 UTR of AKT1 may contain mutations, our

data indicate that in GBM oncogenic deregulation of the PI3K

pathway does not involve mutations in the coding region of AKT1.

Materials and Methods

Tumor sample, Ethics Statement and Isolation of
Genomic DNA

All samples were collected from patients undergoing brain

tumor surgery in the Academic Medical Center (Amsterdam, The

Netherlands). Oral consent for removal of the tissue and its storage

in the tumor bank for research purposes was obtained and

documented in the patient’s medical chart. Individual consent for

this specific project was waivered by our ethics committee because

the research was performed on ‘waste’ material, stored in a coded

fashion. Patient characteristics are displayed in Table 1. Tumor

samples were included only if at least 80% of the sample consisted

of cancer cells, as verified by H&E staining.

Nine astrocytoma cell lines were included: the cell lines

U87MG, U118MG, U251MG, U373MG, T98G (ATCC, Mid-

dlesex, United Kingdom), SKMG-3 (a gift of Dr Christopher Y.

Thomas, University of Virginia Division of Hematology/Oncol-

ogy, Charlottesville, VA), SF763 (gift of Dr M.L. Lamfers,

Table 1. Characteristics of 109 GBM tumor samples.

GBM subclasses primary 94

secondary 15

Patient sex female 47

male 62

Patient age mean age (years) 53.6

median age (years) 55

doi:10.1371/journal.pone.0005638.t001

Table 2. Primer details to sequence the coding sequence of AKT1.

Exon Forward Primer Sequence Reverse Primer Sequence Sequencing Primer Sequence

3 GTCAGAGAGCTTAGAGGGATGG GGCACAGGCACTCACAGA AGTGGGTCTCTGGCTCACC

4 AGTCTGCCTTCCCGTTGAC CAGCCAGTGCTTGTTGCTT GTTTCTGTCGCTGGCCCTA

5 AGGCTTGGAGAGAGGAAGAGAT GGAGTGAGGATGGCTACAGG CTGGTGGGTGGTATGCAAG

6 AGGGCTGTCTCTGGGAACC TGGAGTGCTGAGTGTCTCCTG GGGTGGGTGAAAGACGTG

7 GTTCCCTGTAAGCCTGGACTC TAAAGCAGGGCTGGGTGA GCTCTGCCTCCGACTCTG

8 CCGCTACTACGCCATGAAGA ACATCGTCCCCTAGAGACAGC CATGAAGATCCTCAAGAAGGAAG

9 AACACTCCTTGGCACCTCAG TAACTCAGCAGGAACAAGTCACC ATCAGGCGACGTGGTATCAA

10 AGTTAGGGCTTCTGAGACTTTCC CTTGTCCAGCATGAGGTTCTC GTCCCTTCCCTGTGCAATG

11 CTACCTGCACTCGGAGAAGAAC CAGGACTCGGCATCAAGG GCACAGAGAGGACACAGCATT

12 CTGAGCACACGCAATGCT GACATCAAGCTTTGGCTATCAGT AATGCTGTGTCCTCTCTGTGC

13 GTGAGCTCTGTGGTGCTTTG GCGTGAGTGTGGATATGTGG GCCCTACATCACAGGAGGAA

14 GCTTGCTGCTCTCTGACATC AGGCCTCTCTGAGTGTGGA ATCCAGGTGCTTTGAAGGTCT

15 AGGTCCCTGTGTCAATCTGTG CTCAAATGCACCCGAGAAATA GAGGTTGGCTTCCTACTGGAG

Primers in 59 to 39 direction.
doi:10.1371/journal.pone.0005638.t002
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Department of Neurosurgery, Free University, Amsterdam, The

Netherlands), SF126 (a gift of Dr C. Van Bree, University of

Amsterdam, Laboratory for Experimental Oncology and Radia-

tion Biology, Amsterdam, The Netherlands), Gli-6 was derived

from our own laboratory. Genomic DNA was isolated as

previously described [22].

PCR, Sequencing and Analysis
PCR primers were designed using Primer 3 (http://frodo.wi.

mit.edu/cgi-bin/primer3/primer3_www.cgi), and synthesized by

Invitrogen/Life Technologies, Inc. (Paisley, England) (Table 2).

PCR primers that amplify the selected exons and the flanking

intronic sequences, including splicing donor and acceptor regions,

were used and PCR products were on average 381 bps in length.

PCRs were performed in both 384- and 96-well formats in 5- or

10-uL reaction volumes, respectively, containing 0.25 mmol/L

deoxynucleotide triphosphates, 1 umol/L each of the forward and

reverse primers, 6% DMSO, 16PCR buffer, 1 ng/uL DNA, and

0.05 unit/uL Platinum Taq (Invitrogen/Life Technologies). A

touchdown PCR program was used for PCR amplification (Peltier

Thermocycler, PTC-200, MJ Research, Bio-Rad Laboratories,

Inc., Italy).

PCR conditions were as follows: 94uC for 2 min; three cycles of

94uC for 15 s, 64uC for 30 s, 70uC for 30 s; three cycles of 94uC
for 15 s, 61uC for 30 s, 70uC for 30 s; three cycles of 94uC for

15 s, 58uC for 30 s, 70uC for 30 s; and 35 cycles of 94uC for 15 s,

57uC for 30 s, and 70uC for 30 s, followed by 70uC for 5 min and

12uC thereafter. PCR products were purified using AMPure

(Agencourt Bioscience Corp., Beckman Coulter S.p.A, Milan,

Italy). Cycle sequencing was carried out using BigDye Terminator

v3.1 Cycle Sequencing kit (Applied Biosystems, Foster City, CA)

with an initial denaturation at 97uC for 3 min, followed by 28

cycles of 97uC for 10 s, 50uC for 20 s, and 60uC for 2 min.

Sequencing products were purified using CleanSeq (Agencourt

Bioscience, Beckman Coulter) and analyzed on a 3730 DNA

Analyzer, ABI capillary electrophoresis system (Applied Biosys-

tems). Sequence traces were analyzed using the Mutation Surveyor

software package (SoftGenetics, State College, PA).
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