21 research outputs found

    Role of Endothelial Nitric Oxide Synthase in Glucocorticoid- Induced Hypertension: An Overview of Experimental Data

    Get PDF
    Imbalances in the synthesis or in the bioavailability of nitric oxide (NO), the freely diffusible vasodilator, in myocardial endothelial cells were demonstrated to be crucial in the development of hypertension. Glucocorticoids (GCs) are widely used as immunomodulators. One of the numerous side effects of GC therapy is hypertension arising from reduced release of the endothelium‐derived NO. GCs can modulate NO synthesis by targeting the genes involved in it, like nitric oxide synthase (NOS) and guanosine triphosphate (GTP) cyclohydrolase‐1 (GTPCH‐1). This chapter will give an overview on the impact of GCs on NO synthesis and signalling in animal models as well as in in vitro cell culture models. Moreover, strategies for preventing or neutralizing side effects of long‐term GC therapy will be discussed

    Resolution of cerebral inflammation following subarachnoid hemorrhage in vivo

    No full text

    Role of microRNAs in the regulation of blood-brain barrier function in ischemic stroke and under hypoxic conditions in vitro

    No full text
    The blood-brain barrier (BBB) is a highly specialized structure that separates the brain from the blood and allows the exchange of molecules between these two compartments through selective channels. The breakdown of the BBB is implicated in the development of severe neurological diseases, especially stroke and traumatic brain injury. Oxygen-glucose deprivation is used to mimic stroke and traumatic brain injury in vitro. Pathways that trigger BBB dysfunction include an imbalance of oxidative stress, excitotoxicity, iron metabolism, cytokine release, cell injury, and cell death. MicroRNAs are small non-coding RNA molecules that regulate gene expression and are emerging as biomarkers for the diagnosis of central nervous system (CNS) injuries. In this review, the regulatory role of potential microRNA biomarkers and related therapeutic targets on the BBB is discussed. A thorough understanding of the potential role of various cellular and linker proteins, among others, in the BBB will open further therapeutic options for the treatment of neurological diseases
    corecore