12 research outputs found

    Brominated Tyrosine and Polyelectrolyte Multilayer Analysis by Laser Desorption VUV Postionization and Secondary Ion Mass Spectrometry

    No full text
    The small molecular analyte 3,5-dibromotyrosine (Br2Y) and chitosan-alginate polyelectrolyte multilayers (PEM) with and without adsorbed Br2Y were analyzed by laser desorption postionization mass spectrometry (LDPI-MS). LDPI-MS using 7.87 eV laser and tunable 8 ? 12.5 eV synchrotron vacuum ultraviolet (VUV) radiation found that desorption of clusters from Br2Y films allowed detection by ≤8 eV single photon ionization. Thermal desorption and electronic structure calculations determined the ionization energy of Br2Y to be ~;;8.3?0.1 eV and further indicated that the lower ionization energies of clusters permitted their detection at ≤8 eV photon energies. However, single photon ionization could only detect Br2Y adsorbed within PEMs when using either higher photon energies or matrix addition to the sample. All samples were also analyzed by 25 keV Bi3 + secondary ion mass spectrometry (SIMS), with the negative ion spectra showing strong parent ion signal which complemented that observed by LDPI-MS. The negative ion SIMS depended strongly on the high electron affinity of this specific analyte and the analyte?s condensed phase environment

    Identification and imaging of peptides and proteins on Enterococcus faecalis biofilms by matrix assisted laser desorption ionization mass spectrometry

    No full text
    The heptapeptide ARHPHPH was identified from biofilms and planktonic cultures of two different strains of Enterococcus faecalis, V583 and ATCC 29212, using matrix assisted laser desorption ionization mass spectrometry (MALDI-MS). ARHPHPH was also imaged at the boundary of cocultured, adjacent E. faecalis and Escherichia coli (ATCC 25922) biofilms, appearing only on the E. faecalis side. ARHPHPH was proteolyzed from kappa-casein, a component in the growth media, by E. faecalis microbes. Additionally, top down and bottom up proteomic approaches were combined to identify and spatially locate multiple proteins within intact E. faecalis V583 biofilms by MALDI-MS. The resultant tandem MS data were searched against the NCBInr E. faecalis V583 database to identify thirteen cytosolic and membrane proteins which have functional association with the cell surface. Two of these proteins, enolase and GAPDH, are glycolytic enzymes known to display multiple functions in bacterial virulence in related bacterial strains. This work illustrates a powerful approach for discovering and localizing multiple peptides and proteins within intact biofilms

    Quantification of Antibiotic in Biofilm-Inhibiting Multilayers by 7.87 eV Laser Desorption Postionization MS Imaging

    No full text
    The potential of laser desorption postionization mass spectrometry (LDPI-MS) imaging for small molecule quantification is demonstrated here. The N-methylpiperazine acetamide (MPA) of ampicillin was adsorbed into polyelectrolyte multilayer surface coatings composed of chitosan and alginate, both high molecular weight biopolymers. These MPA-ampicillin spiked multilayers were then shown to inhibit the growth of Enterococcus faecalis biofilms that play a role in early stage infection of implanted medical devices. Finally, LDPI-MS imaging using 7.87 eV single photon ionization was found to detect MPA-ampicillin within the multilayers before and after biofilm growth with limits of quantification and detection of 0.6 and 0.3 nmol, respectively. The capabilities of LDPI-MS imaging for small molecule quantification are compared to those of MALDI-MS. Furthermore, these results indicate that 7.87 eV LDPI-MS imaging should be applicable to quantification of a range of small molecular species on a variety of complex organic and biological surfaces. Finally, while MS imaging for quantification was demonstrated here using LDPI, it is a generally useful strategy that can be applied to other methods

    Brominated Tyrosine and Polyelectrolyte Multilayer Analysis by Laser Desorption VUV Postionization and Secondary Ion Mass Spectrometry

    No full text
    The small molecular analyte 3,5-dibromotyrosine (Br2Y) and chitosan-alginate polyelectrolyte multilayers (PEM) with and without adsorbed Br2Y were analyzed by laser desorption postionization mass spectrometry (LDPI-MS). LDPI-MS using 7.87 eV laser and tunable 8 ? 12.5 eV synchrotron vacuum ultraviolet (VUV) radiation found that desorption of clusters from Br2Y films allowed detection by≤8 eV single photon ionization. Thermal desorption and electronic structure calculations determined the ionization energy of Br2Y to be ~;;8.3?0.1 eV and further indicated that the lower ionization energies of clusters permitted their detection at≤8 eV photon energies. However, single photon ionization could only detect Br2Y adsorbed within PEMs when using either higher photon energies or matrix addition to the sample. All samples were also analyzed by 25 keV Bi3 + secondary ion mass spectrometry (SIMS), with the negative ion spectra showing strong parent ion signal which complemented that observed by LDPI-MS. The negative ion SIMS depended strongly on the high electron affinity of this specific analyte and the analyte?s condensed phase environment

    Quantification of Antibiotic in Biofilm-Inhibiting Multilayers by 7.87 eV Laser Desorption Postionization MS Imaging

    No full text
    The potential of laser desorption postionization mass spectrometry (LDPI-MS) imaging for small molecule quantification is demonstrated here. The <i>N</i>-methylpiperazine acetamide (MPA) of ampicillin was adsorbed into polyelectrolyte multilayer surface coatings composed of chitosan and alginate, both high molecular weight biopolymers. These MPA-ampicillin spiked multilayers were then shown to inhibit the growth of Enterococcus faecalis biofilms that play a role in early stage infection of implanted medical devices. Finally, LDPI-MS imaging using 7.87 eV single-photon ionization was found to detect MPA-ampicillin within the multilayers before and after biofilm growth with limits of quantification and detection of 0.6 and 0.3 nmol, respectively. The capabilities of LDPI-MS imaging for small molecule quantification are compared to those of MALDI-MS. Furthermore, these results indicate that 7.87 eV LDPI-MS imaging should be applicable to quantification of a range of small molecular species on a variety of complex organic and biological surfaces. Finally, while MS imaging for quantification was demonstrated here using LDPI, it is a generally useful strategy that can be applied to other methods

    Identification and imaging of peptides and proteins on Enterococcus faecalis biofilms by matrix assisted laser desorption ionization mass spectrometry

    No full text
    The heptapeptide ARHPHPH was identified from biofilms and planktonic cultures of two different strains of Enterococcus faecalis, V583 and ATCC 29212, using matrix assisted laser desorption ionization mass spectrometry (MALDI-MS). ARHPHPH was also imaged at the boundary of cocultured, adjacent E. faecalis and Escherichia coli (ATCC 25922) biofilms, appearing only on the E. faecalis side. ARHPHPH was proteolyzed from κ-casein, a component in the growth media, by E. faecalis microbes. Additionally, top down and bottom up proteomic approaches were combined to identify and spatially locate multiple proteins within intact E. faecalis V583 biofilms by MALDI-MS. The resultant tandem MS data were searched against the NCBInr E. faecalis V583 database to identify thirteen cytosolic and membrane proteins which have functional association with the cell surface. Two of these proteins, enolase and GAPDH, are glycolytic enzymes known to display multiple functions in bacterial virulence in related bacterial strains. This work illustrates a powerful approach for discovering and localizing multiple peptides and proteins within intact biofilms

    Quantification of Antibiotic in Biofilm-Inhibiting Multilayers by 7.87 eV Laser Desorption Postionization MS Imaging

    No full text
    The potential of laser desorption postionization mass spectrometry (LDPI-MS) imaging for small molecule quantification is demonstrated here. The N-methylpiperazine acetamide of (MPA) ampicillin was adsorbed into polyelectrolyte multilayer surface coatings composed of chitosan and alginate, both high molecular weight biopolymers. These MPA-ampicillin spiked multilayers were then shown to inhibit the growth of E. faecalis biofilms that play a role in early stage infection of implanted medical devices. Finally, LDPI-MS imaging using 7.87 eV single photon ionization was found to detect MPA-ampicillin with the multilayers before and after biofilm growth with limits of quantification and detection of 0.6 and 0.3 nmoles, respectively. The capabilities of LDPI-MS imaging for small molecule quantification are compared to those of MALDI-MS. Furthermore, these results indicate that 7.87 eV LDPI-MS imaging should be applicable to quantification of a range of small molecular species on a variety of complex organic and biological surfaces. Finally, while MS imaging for quantification was demonstrated here using LDPI, it is a generally useful strategy that can be applied to other methods
    corecore