2,607 research outputs found

    Cosmological constraints on Lorentz violating dark energy

    Full text link
    The role of Lorentz invariance as a fundamental symmetry of nature has been lately reconsidered in different approaches to quantum gravity. It is thus natural to study whether other puzzles of physics may be solved within these proposals. This may be the case for the cosmological constant problem. Indeed, it has been shown that breaking Lorentz invariance provides Lagrangians that can drive the current acceleration of the universe without experiencing large corrections from ultraviolet physics. In this work, we focus on the simplest model of this type, called ThetaCDM, and study its cosmological implications in detail. At the background level, this model cannot be distinguished from LambdaCDM. The differences appear at the level of perturbations. We show that in ThetaCDM, the spectrum of CMB anisotropies and matter fluctuations may be affected by a rescaling of the gravitational constant in the Poisson equation, by the presence of extra contributions to the anisotropic stress, and finally by the existence of extra clustering degrees of freedom. To explore these modifications accurately, we modify the Boltzmann code CLASS. We then use the parameter inference code Monte Python to confront ThetaCDM with data from WMAP-7, SPT and WiggleZ. We obtain strong bounds on the parameters accounting for deviations from LambdaCDM. In particular, we find that the discrepancy between the gravitational constants appearing in the Poisson and Friedmann equations is constrained at the level 1.8%.Comment: 17 pages, 5 figure

    Gauge Symmetry and Consistent Spin-Two Theories

    Get PDF
    We study Lagrangians with the minimal amount of gauge symmetry required to propagate spin-two particles without ghosts or tachyons. In general, these Lagrangians also have a scalar mode in their spectrum. We find that, in two cases, the symmetry can be enhanced to a larger group: the whole group of diffeomorphisms or a enhancement involving a Weyl symmetry. We consider the non-linear completions of these theories. The intuitive completions yield the usual scalar-tensor theories except for the pure spin-two cases, which correspond to two inequivalent Lagrangians giving rise to Einstein's equations. A more constructive self-consistent approach yields a background dependent Lagrangian.Comment: 7 pages, proceedings of IRGAC'06; typo correcte

    The good, the bad and the ugly .... of Horava gravity

    Full text link
    I review the good, the bad and the ugly of the non-projectable versions of Horava gravity. I explain how this non-relativistic theory was constructed and why it was touted with such excitement as a quantum theory of gravity. I then review some of the issues facing the theory, explaining how strong coupling occurs and why this is such a problem for both phenomenology and the question of renormalisability. Finally I comment on possible violations of Equivalence Principle, and explain why these could be an issue for Blas et al's "healthy extension". This paper was presented as a talk at PASCOS 2010 in Valencia.Comment: 7 page

    Bigravity and Lorentz-violating Massive Gravity

    Get PDF
    Bigravity is a natural arena where a non-linear theory of massive gravity can be formulated. If the interaction between the metrics ff and gg is non-derivative, spherically symmetric exact solutions can be found. At large distances from the origin, these are generically Lorentz-breaking bi-flat solutions (provided that the corresponding vacuum energies are adjusted appropriately). The spectrum of linearized perturbations around such backgrounds contains a massless as well as a massive graviton, with {\em two} physical polarizations each. There are no propagating vectors or scalars, and the theory is ghost free (as happens with certain massive gravities with explicit breaking of Lorentz invariance). At the linearized level, corrections to GR are proportional to the square of the graviton mass, and so there is no vDVZ discontinuity. Surprisingly, the solution of linear theory for a static spherically symmetric source does {\em not} agree with the linearization of any of the known exact solutions. The latter coincide with the standard Schwarzschild-(A)dS solutions of General Relativity, with no corrections at all. Another interesting class of solutions is obtained where ff and gg are proportional to each other. The case of bi-de Sitter solutions is analyzed in some detail.Comment: 25 pages. v3 Typos corrected, references added. v4 Introduction extende

    Cosmological constraints on deviations from Lorentz invariance in gravity and dark matter

    Get PDF
    We consider a scenario where local Lorentz invariance is violated by the existence of a preferred time direction at every space-time point. This scenario can arise in the context of quantum gravity and its description at low energies contains a unit time-like vector field which parameterizes the preferred direction. The particle physics tests of Lorentz invariance preclude a direct coupling of this vector to the fields of the Standard Model, but do not bear implications for dark matter. We discuss how the presence of this vector and its possible coupling to dark matter affect the evolution of the Universe. At the level of homogeneous cosmology the only effect of Lorentz invariance violation is a rescaling of the expansion rate. The physics is richer at the level of perturbations. We identify three effects crucial for observations: the rescaling of the matter contribution to the Poisson equation, the appearance of an extra contribution to the anisotropic stress and the scale-dependent enhancement of dark matter clustering. These effects result in distinctive features in the power spectra of the CMB and density fluctuations. Making use of the data from Planck and WiggleZ we obtain the most stringent cosmological constraints to date on departures from Lorentz symmetry. Our analysis provides the first direct bounds on deviations from Lorentz invariance in the dark matter sector.Comment: 10 pages, 3 figures, revtex; footnote on isocurvature modes added, discussion on the decoupling of the Standard Model fields from the aether extended, a reference added; version to be published in JCA

    Affine Toda model coupled to matter and the string tension in QCD2_{2}

    Get PDF
    The sl(2)sl(2) affine Toda model coupled to matter (ATM) is shown to describe various features, such as the spectrum and string tension, of the low-energy effective Lagrangian of QCD2_{2} (one flavor and NN colors). The corresponding string tension is computed when the dynamical quarks are in the {\sl fundamental} representation of SU(N) and in the {\sl adjoint} representation of SU(2).Comment: LaTex, 10 pages. Revised version to appear in Phys. Rev.

    Experimental assessment of the speed of light perturbation in free-fall absolute gravimeters

    Full text link
    Precision absolute gravity measurements are growing in importance, especially in the context of the new definition of the kilogram. For the case of free-fall absolute gravimeters with a Michelson-type interferometer tracking the position of a free falling body, one of the effects that needs to be taken into account is the speed of light perturbation due to the finite speed of propagation of light. This effect has been extensively discussed in the past, and there is at present a disagreement between different studies. In this work, we present the analysis of new data and confirm the result expected from the theoretical analysis applied nowadays in free-fall gravimeters. We also review the standard derivations of this effect (by using phase shift or Doppler effect arguments) and show their equivalence

    Three-dimensional massive gravity and the bigravity black hole

    Full text link
    We study three-dimensional massive gravity formulated as a theory with two dynamical metrics, like the f-g theories of Isham-Salam and Strathdee. The action is parity preserving and has no higher derivative terms. The spectrum contains a single massive graviton. This theory has several features discussed recently in TMG and NMG. We find warped black holes, a critical point, and generalized Brown-Henneaux boundary conditions.Comment: 8 pages, Revtex. Minor change. References adde
    corecore