118 research outputs found

    Röntgenstrukturanalyse der Tyrosin-Aminotransferase aus Trypanosoma cruzi bei 2.5 Å Auflösung

    Get PDF
    Tyrosin-Aminotransferase (TAT) aus Trypanosoma cruzi ist ein mögliches Zielmolekül zur Entwicklung neuer Medikamente gegen die Amerikanische Trypanomiasis. Das Protein gehört zur strukturell bisher unbeschriebenen Aminotransferasen-Subfamilie I gamma und ist mit der menschlichen TAT zu 41 identisch. Die vorliegende Arbeit beschreibt die Röntgenstrukturanalyse von T. cruzi-TAT, gibt ein Modell für das Substratspektrum des Enzyms und liefert einen strukturellen Vergleich mit anderen Aminotransferasen. Außerdem wird der Effekt von Punktmutationen, die beim Menschen zu vererbter TAT-Defizienz führen, erklärt sowie nach Gründen für die leicht unterschiedliche Spezifität des humanen Proteins gesucht. TAT aus T. cruzi-Epimastigoten wurde mit PEG 4000 bzw. 8000 als Fällungsmittel kristallisiert. Die Kristalle gehören zur Raumgruppe P 21 mit einem Dimer pro asymmetrischer Einheit und streuen an der Kupfer-Drehanode bis 2.5 A. Inititiale Phasen wurden aus der geschlossenen Form von E. coli-Aspartat-Aminotransferase gewonnen. Die endverfeinerte Struktur zeigt einen R-Wert von 15.7 (freier R-Wert: 21.4 ) und besitzt mit dem Suchmodell 13 Sequenzidentität. Das bevorzugte Substrat Tyrosin kann laut Computersimulation mit seiner Seitenkette eine Wasserstoffbrücke zu Asparagin 17 des Proteins ausbilden. Die Bevorzugung von Pyruvat vor zweifach negativ geladenen Oxoverbindungen beruht auf dem Kofaktorbindungsmodus in T. cruzi-TAT, der zu einer Abstoßung negativ geladener Substratseitenketten führt. In humaner TAT könnte die Anwesenheit eines Cysteins anstelle eines Glycins die Kofaktorbindung verändern, so daß die Abstoßungsmechanismen aus T. cruzi-TAT bei diesem Enzym nicht bestehen.Tyrosine aminotransferase (TAT) from Trypanosoma cruzi is a potential target for the developement of new drugs against American Trypanosomiasis. The protein belongs to the structurally uncharacterised aminotransferase subfamily I gamma and possesses a sequence identity of 41 with human TAT. This thesis describes the X-ray structure analysis of T. cruzi-TAT, gives a model for the enzyme's substrate spectrum and compares the protein with other aminotransferases on a structural basis. In addition, the effect of point mutations that lead to inherited TAT deficiency in man is explained and probable reasons for the slightly different substrate specificity of the human enzyme are presented. TAT from T. cruzi epimastigotes has been crystallised with PEG 4000 or 8000 as precipitant. Crystals belong to space group P 21 with one dimer per asymmetric unit and diffract to 2.5 A at a rotating copper anode. Initial phases could be obtained with the closed form of E. coli aspartate aminotransferase. The refined structure has an R-value of 15.7 (free R-value: 21.4 ) and exhibits 13 sequence identity with the search model. Computer simulations suggest the presence of a hydrogen bond between the side chain of the preferred substrate tyrosine and asparagine 17 of the protein. The preference for pyruvate over doubly negative charged oxocompounds is a consequence of the cofactor binding mode which leads to a repulsion of negatively charged side chains. In human TAT the presence of a cysteine instead of a glycine could change the cofactor binding such that the repulsion mechanism of T. cruzi-TAT does not exist in this enzyme

    Eukaryotic Box C/D methylation machinery has two non-symmetric protein assembly sites

    Get PDF
    Box C/D ribonucleoprotein complexes are RNA-guided methyltransferases that methylate the ribose 2’-OH of RNA. The central ‘guide RNA’ has box C and D motifs at its ends, which are crucial for activity. Archaeal guide RNAs have a second box C’/D’ motif pair that is also essential for function. This second motif is poorly conserved in eukaryotes and its function is uncertain. Conflicting literature data report that eukaryotic box C’/D’ motifs do or do not bind proteins specialized to recognize box C/D-motifs and are or are not important for function. Despite this uncertainty, the architecture of eukaryotic 2’-O-methylation enzymes is thought to be similar to that of their archaeal counterpart. Here, we use biochemistry, X-ray crystallography and mutant analysis to demonstrate the absence of functional box C’/D’ motifs in more than 80% of yeast guide RNAs. We conclude that eukaryotic Box C/D RNPs have two non-symmetric protein assembly sites and that their three-dimensional architecture differs from that of archaeal 2’-O-methylation enzymes

    Atomic resolution structure of EhpR: phenazine resistance in Enterobacter agglomerans Eh1087 follows principles of bleomycin / mitomycin C resistance in other bacteria

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Background The phenazines are redox-active secondary metabolites that a large number of bacterial strains produce and excrete into the environment. They possess antibiotic activity owing to the fact that they can reduce molecular oxygen to toxic reactive oxygen species. In order to take advantage of this activity, phenazine producers need to protect themselves against phenazine toxicity. Whereas it is believed that phenazine-producing pseudomonads possess highly active superoxide dismutases and catalases, it has recently been found that the plant-colonizing bacterium Enterobacter agglomerans expresses a small gene ehpR to render itself resistant towards D-alanyl-griseoluteic acid, the phenazine antibiotic produced by this strain. Results To understand the resistance mechanism installed by EhpR we have determined its crystal structure in the apo form at 2.15 Å resolution and in complex with griseoluteic acid at 1.01 Å, respectively. While EhpR shares a common fold with glyoxalase-I/bleomycin resistance proteins, the ligand binding site does not contain residues that some related proteins employ to chemically alter their substrates. Binding of the antibiotic is mediated by π-stacking interactions of the aromatic moiety with the side chains of aromatic amino acids and by a few polar interactions. The dissociation constant KD between EhpR and griseoluteic acid was quantified as 244 ± 45 μM by microscale thermophoresis measurements. Conclusions The data accumulated here suggest that EhpR confers resistance by binding D-alanyl-griseoluteic acid and acting as a chaperone involved in exporting the antibiotic rather than by altering it chemically. It is tempting to speculate that EhpR acts in concert with EhpJ, a transport protein of the major facilitator superfamily that is also encoded in the phenazine biosynthesis operon of E. agglomerans. The low affinity of EhpR for griseoluteic acid may be required for its physiological function.Peer Reviewe

    Moonlighting chaperone activity of the enzyme PqsE contributes to RhlR-controlled virulence of Pseudomonas aeruginosa

    Get PDF
    Pseudomonas aeruginosa is a major cause of nosocomial infections and also leads to severe exacerbations in cystic fibrosis or chronic obstructive pulmonary disease. Three intertwined quorum sensing systems control virulence of P. aeruginosa, with the rhl circuit playing the leading role in late and chronic infections. The majority of traits controlled by rhl transcription factor RhlR depend on PqsE, a dispensable thioesterase in Pseudomonas Quinolone Signal (PQS) biosynthesis that interferes with RhlR through an enigmatic mechanism likely involving direct interaction of both proteins. Here we show that PqsE and RhlR form a 2:2 protein complex that, together with RhlR agonist N-butanoyl-L-homoserine lactone (C4-HSL), solubilizes RhlR and thereby renders the otherwise insoluble transcription factor active. We determine crystal structures of the complex and identify residues essential for the interaction. To corroborate the chaperone-like activity of PqsE, we design stability-optimized variants of RhlR that bypass the need for C4-HSL and PqsE in activating PqsE/RhlR-controlled processes of P. aeruginosa. Together, our data provide insight into the unique regulatory role of PqsE and lay groundwork for developing new P. aeruginosa-specific pharmaceuticals

    Purification and crystallization of human Cu/Zn superoxide dismutase recombinantly produced in the protozoan Leishmania tarentolae

    Get PDF
    The rapid and inexpensive production of high-quality eukaryotic proteins in recombinant form still remains a challenge in structural biology. Here, a protein-expression system based on the protozoan Leishmania tarentolae was used to produce human Cu/Zn superoxide dismutase (SOD1) in recombinant form. Sequential integration of the SOD1 expression cassettes was demonstrated to lead to a linear increase in expression levels to up to 30 mg per litre. Chromatographic purification resulted in 90% pure recombinant protein, with a final yield of 6.5 mg per litre of culture. The protein was crystallized and the structures of two new crystal forms were determined. These results demonstrate the suitability of the L. tarentolae expression system for structural research

    The alternative coproporphyrinogen III oxidase (CgoN) catalyzes the oxygen-independent conversion of coproporphyrinogen III into coproporphyrin III

    Get PDF
    Nature utilizes three distinct pathways to synthesize the essential enzyme cofactor heme. The coproporphyrin III-dependent pathway, predominantly present in Bacillaceae, employs an oxygen-dependent coproporphyrinogen III oxidase (CgoX) that converts coproporphyrinogen III into coproporphyrin III. In this study, we report the bioinformatic-based identification of a gene called ytpQ, encoding a putative oxygen-independent counterpart, which we propose to term CgoN, from Priestia (Bacillus) megaterium. The recombinantly produced, purified, and monomeric YtpQ (CgoN) protein is shown to catalyze the oxygen-independent conversion of coproporphyrinogen III into coproporphyrin III. Minimal non-enzymatic conversion of coproporphyrinogen III was observed under the anaerobic test conditions employed in this study. FAD was identified as a cofactor, and menadione served as an artificial acceptor for the six abstracted electrons, with a KM value of 3.95 μmol/L and a kcat of 0.63 per min for the substrate. The resulting coproporphyrin III, in turn, acts as an effective substrate for the subsequent enzyme of the pathway, the coproporphyrin III ferrochelatase (CpfC). Under aerobic conditions, oxygen directly serves as an electron acceptor, but is replaced by the more efficient action of menadione. An AlphaFold2 model of the enzyme suggests that YtpQ adopts a compact triangular shape consisting of three domains. The N-terminal domain appears to be flexible with respect to the rest of the structure, potentially creating a ligand binding site that opens and closes during the catalytic cycle. A catalytic mechanism similar to the oxygen-independent protoporphyrinogen IX oxidase PgoH1 (HemG), based on the flavin-dependent abstraction of six electrons from coproporphyrinogen III and their potential quinone-dependent transfer to a membrane-localized electron transport chain, is proposed

    Revisiting the planarity of nucleic acid bases: Pyramidilization at glycosidic nitrogen in purine bases is modulated by orientation of glycosidic torsion

    Get PDF
    We describe a novel, fundamental property of nucleobase structure, namely, pyramidilization at the N1/9 sites of purine and pyrimidine bases. Through a combined analyses of ultra-high-resolution X-ray structures of both oligonucleotides extracted from the Nucleic Acid Database and isolated nucleotides and nucleosides from the Cambridge Structural Database, together with a series of quantum chemical calculations, molecular dynamics (MD) simulations, and published solution nuclear magnetic resonance (NMR) data, we show that pyramidilization at the glycosidic nitrogen is an intrinsic property. This property is common to isolated nucleosides and nucleotides as well as oligonucleotides—it is also common to both RNA and DNA. Our analysis suggests that pyramidilization at N1/9 sites depends in a systematic way on the local structure of the nucleoside. Of note, the pyramidilization undergoes stereo-inversion upon reorientation of the glycosidic bond. The extent of the pyramidilization is further modulated by the conformation of the sugar ring. The observed pyramidilization is more pronounced for purine bases, while for pyrimidines it is negligible. We discuss how the assumption of nucleic acid base planarity can lead to systematic errors in determining the conformation of nucleotides from experimental data and from unconstrained MD simulations

    Noncompaction of the Ventricular Myocardium Is Associated with a De Novo Mutation in the β-Myosin Heavy Chain Gene

    Get PDF
    Noncompaction of the ventricular myocardium (NVM) is the morphological hallmark of a rare familial or sporadic unclassified heart disease of heterogeneous origin. NVM results presumably from a congenital developmental error and has been traced back to single point mutations in various genes. The objective of this study was to determine the underlying genetic defect in a large German family suffering from NVM. Twenty four family members were clinically assessed using advanced imaging techniques. For molecular characterization, a genome-wide linkage analysis was undertaken and the disease locus was mapped to chromosome 14ptel-14q12. Subsequently, two genes of the disease interval, MYH6 and MYH7 (encoding the α- and β-myosin heavy chain, respectively) were sequenced, leading to the identification of a previously unknown de novo missense mutation, c.842G>C, in the gene MYH7. The mutation affects a highly conserved amino acid in the myosin subfragment-1 (R281T). In silico simulations suggest that the mutation R281T prevents the formation of a salt bridge between residues R281 and D325, thereby destabilizing the myosin head. The mutation was exclusively present in morphologically affected family members. A few members of the family displayed NVM in combination with other heart defects, such as dislocation of the tricuspid valve (Ebstein's anomaly, EA) and atrial septal defect (ASD). A high degree of clinical variability was observed, ranging from the absence of symptoms in childhood to cardiac death in the third decade of life. The data presented in this report provide first evidence that a mutation in a sarcomeric protein can cause noncompaction of the ventricular myocardium

    Breast cancer-specific mutations in CK1ε inhibit Wnt/β-catenin and activate the Wnt/Rac1/JNK and NFAT pathways to decrease cell adhesion and promote cell migration

    Get PDF
    Introduction Breast cancer is one of the most common types of cancer in women. One of the genes that were found mutated in breast cancer is casein kinase 1 epsilon (CK1ε). Because CK1ε is a crucial regulator of the Wnt signaling cascades, we determined how these CK1ε mutations interfere with the Wnt pathway and affect the behavior of epithelial breast cancer cell lines. Methods We performed in silico modeling of various mutations and analyzed the kinase activity of the CK1ε mutants both in vitro and in vivo. Furthermore, we used reporter and small GTPase assays to identify how mutation of CK1ε affects different branches of the Wnt signaling pathway. Based on these results, we employed cell adhesion and cell migration assays in MCF7 cells to demonstrate a crucial role for CK1ε in these processes. Results In silico modeling and in vivo data showed that autophosphorylation at Thr 44, a site adjacent to the breast cancer point mutations in the N-terminal lobe of human CK1ε, is involved in positive regulation of the CK1ε activity. Our data further demonstrate that, in mammalian cells, mutated forms of CK1ε failed to affect the intracellular localization and phosphorylation of Dvl2; we were able to demonstrate that CK1ε mutants were unable to enhance Dvl-induced TCF/LEF-mediated transcription, that CK1ε mutants acted as loss-of-function in the Wnt/β-catenin pathway, and that CK1ε mutants activated the noncanonical Wnt/Rac-1 and NFAT pathways, similar to pharmacological inhibitors of CK1. In line with these findings, inhibition of CK1 promoted cell migration as well as decreased cell adhesion and E-cadherin expression in the breast cancer-derived cell line MCF7. Conclusions In summary, these data suggest that the mutations of CK1ε found in breast cancer can suppress Wnt/β-catenin as well as promote the Wnt/Rac-1/JNK and Wnt/NFAT pathways, thus contributing to breast cancer development via effects on cell adhesion and migration. In terms of molecular mechanism, our data indicate that the breast cancer point mutations in the N-terminal lobe of CK1ε, which are correlated with decreased phosphorylation activities of mutated forms of CK1ε both in vitro and in vivo, interfere with positive autophosphorylation at Thr 4
    corecore