685 research outputs found

    Bibliographie d’Herménégilde Chiasson

    Get PDF

    Un modèle de poutre à section fortement déformable. Application au pliage at au déploiement de mètres rubans.

    No full text
    National audienceSee http://hal.archives-ouvertes.fr/docs/00/59/28/67/ANNEX/r_D90G1MU4.pd

    Microdomain Ca2+ Activation during Exocytosis in Paramecium Cells. Superposition of Local Subplasmalemmal Calcium Store Activation by Local Ca2+ Influx

    Get PDF
    In Paramecium tetraurelia, polyamine-triggered exocytosis is accompanied by the activation of Ca2+-activated currents across the cell membrane (Erxleben, C., and H. Plattner. 1994. J. Cell Biol. 127:935– 945). We now show by voltage clamp and extracellular recordings that the product of current × time (As) closely parallels the number of exocytotic events. We suggest that Ca2+ mobilization from subplasmalemmal storage compartments, covering almost the entire cell surface, is a key event. In fact, after local stimulation, Ca2+ imaging with high time resolution reveals rapid, transient, local signals even when extracellular Ca2+ is quenched to or below resting intracellular Ca2+ concentration ([Ca2+]e ⩽ [Ca2+]i). Under these conditions, quenched-flow/freeze-fracture analysis shows that membrane fusion is only partially inhibited. Increasing [Ca2+]e alone, i.e., without secretagogue, causes rapid, strong cortical increase of [Ca2+]i but no exocytosis. In various cells, the ratio of maximal vs. minimal currents registered during maximal stimulation or single exocytotic events, respectively, correlate nicely with the number of Ca stores available. Since no quantal current steps could be observed, this is again compatible with the combined occurrence of Ca2+ mobilization from stores (providing close to threshold Ca2+ levels) and Ca2+ influx from the medium (which per se does not cause exocytosis). This implies that only the combination of Ca2+ flushes, primarily from internal and secondarily from external sources, can produce a signal triggering rapid, local exocytotic responses, as requested for Paramecium defense

    Coronavirus Disease 2019-Related Alterations of Total and Anti-Spike IgG Glycosylation in Relation to Age and Anti-Spike IgG Titer

    Get PDF
    The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been affecting the world since January 2020 and has caused millions of deaths. To gain a better insight into molecular changes underlying the COVID-19 disease, we investigated here the N-glycosylation of three immunoglobulin G (IgG) fractions isolated from plasma of 35 severe COVID-19 patients, namely total IgG(1), total IgG(2), and anti-Spike IgG, by means of MALDI-TOF-MS. All analyses were performed at the glycopeptide level to assure subclass- and site-specific information. For each COVID-19 patient, the analyses included three blood withdrawals at different time-points of hospitalization, which allowed profiling longitudinal alterations in IgG glycosylation. The COVID-19 patients presented altered IgG N-glycosylation profiles in all investigated IgG fractions. The most pronounced COVID-19-related changes were observed in the glycosylation profiles of antigen-specific anti-Spike IgG(1). Anti-Spike IgG(1) fucosylation and galactosylation showed the strongest variation during the disease course, with the difference in anti-Spike IgG(1) fucosylation being significantly correlated with patients' age. Decreases in anti-Spike IgG(1) galactosylation and sialylation in the course of the disease were found to be significantly correlated with the difference in anti-Spike IgG plasma concentration. The present findings suggest that patients' age and anti-S IgG abundance might influence IgG N-glycosylation alterations occurring in COVID-19

    A Goldstone Theorem in Thermal Relativistic Quantum Field Theory

    Full text link
    We prove a Goldstone Theorem in thermal relativistic quantum field theory, which relates spontaneous symmetry breaking to the rate of space-like decay of the two-point function. The critical rate of fall-off coincides with that of the massless free scalar field theory. Related results and open problems are briefly discussed

    Mechanisms and advancement of antifading agents for fluorescence microscopy and single-molecule spectroscopy

    Get PDF
    Modern fluorescence microscopy applications go along with increasing demands for the employed fluorescent dyes. In this work, we compared antifading formulae utilizing a recently developed reducing and oxidizing system (ROXS) with commercial antifading agents. To systematically test fluorophore performance in fluorescence imaging of biological samples, we carried out photobleaching experiments using fixed cells labeled with various commonly used organic dyes, such as Alexa 488, Alexa 594, Alexa 647, Cy3B, ATTO 550, and ATTO 647N. Quantitative evaluation of (i) photostability, (ii) brightness, and (iii) storage stability of fluorophores in samples mounted in different antifades (AFs) reveal optimal combinations of dyes and AFs. Based on these results we provide guidance on which AF should preferably be used with a specific dye. Finally, we studied the antifading mechanisms of the commercial AFs using single-molecule spectroscopy and reveal that these empirically selected AFs exhibit similar properties to ROXS AFs
    • …
    corecore