272 research outputs found

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Search for CP violation using T-odd correlations in D-0 -&gt; K+K-pi(+)pi(-) decays

    Get PDF
    A search for CPCP violation using TT-odd correlations is performed using the four-body D0K+Kπ+πD^0 \to K^+K^-\pi^+\pi^- decay, selected from semileptonic BB decays. The data sample corresponds to integrated luminosities of 1.0fb11.0\,\text{fb}^{-1} and 2.0fb12.0\,\text{fb}^{-1} recorded at the centre-of-mass energies of 7 TeV and 8 TeV, respectively. The CPCP-violating asymmetry aCPT-odda_{CP}^{T\text{-odd}} is measured to be (0.18±0.29(stat)±0.04(syst))%(0.18\pm 0.29\text{(stat)}\pm 0.04\text{(syst)})\%. Searches for CPCP violation in different regions of phase space of the four-body decay, and as a function of the D0D^0 decay time, are also presented. No significant deviation from the CPCP conservation hypothesis is found

    Measurement of the (eta c)(1S) production cross-section in proton-proton collisions via the decay (eta c)(1S) -&gt; p(p)over-bar

    Get PDF

    A study of CP violation in B-+/- -&gt; DK +/- and B-+/- -&gt; D pi(+/-) decays with D -&gt; (KSK +/-)-K-0 pi(-/+) final states

    Get PDF
    A first study of CP violation in the decay modes B±[KS0K±π]Dh±B^\pm\to [K^0_{\rm S} K^\pm \pi^\mp]_D h^\pm and B±[KS0Kπ±]Dh±B^\pm\to [K^0_{\rm S} K^\mp \pi^\pm]_D h^\pm, where hh labels a KK or π\pi meson and DD labels a D0D^0 or D0\overline{D}^0 meson, is performed. The analysis uses the LHCb data set collected in pppp collisions, corresponding to an integrated luminosity of 3 fb1^{-1}. The analysis is sensitive to the CP-violating CKM phase γ\gamma through seven observables: one charge asymmetry in each of the four modes and three ratios of the charge-integrated yields. The results are consistent with measurements of γ\gamma using other decay modes

    Measurement of CP asymmetry in B-s(0) -&gt; D-s(-/+) K--/+ decays

    Get PDF
    We report on measurements of the time-dependent CP violating observables in Bs0DsK±B^0_s\rightarrow D^{\mp}_s K^{\pm} decays using a dataset corresponding to 1.0 fb1^{-1} of pp collisions recorded with the LHCb detector. We find the CP violating observables Cf=0.53±0.25±0.04C_f=0.53\pm0.25\pm0.04, AfΔΓ=0.37±0.42±0.20A^{\Delta\Gamma}_f=0.37\pm0.42\pm0.20, AfˉΔΓ=0.20±0.41±0.20A^{\Delta\Gamma}_{\bar{f}}=0.20\pm0.41\pm0.20, Sf=1.09±0.33±0.08S_f=-1.09\pm0.33\pm0.08, Sfˉ=0.36±0.34±0.08S_{\bar{f}}=-0.36\pm0.34\pm0.08, where the uncertainties are statistical and systematic, respectively. We use these observables to make the first measurement of the CKM angle γ\gamma in Bs0DsK±B^0_s\rightarrow D^{\mp}_s K^{\pm} decays, finding γ\gamma = (11543+28_{-43}^{+28})^\circ modulo 180^\circ at 68% CL, where the error contains both statistical and systematic uncertainties.We report on measurements of the time-dependent CP violating observables in Bs0_{s}^{0}  → Ds_{s}^{∓} K±^{±} decays using a dataset corresponding to 1.0 fb1^{−1} of pp collisions recorded with the LHCb detector. We find the CP violating observables Cf_{f} = 0.53±0.25±0.04, AfΔΓ_{f}^{ΔΓ}  = 0.37 ± 0.42 ± 0.20, AfΔΓ=0.20±0.41±0.20 {A}_{\overline{f}}^{\varDelta \varGamma }=0.20\pm 0.41\pm 0.20 , Sf_{f} = −1.09±0.33±0.08, Sf=0.36±0.34±0.08 {S}_{\overline{f}}=-0.36\pm 0.34\pm 0.08 , where the uncertainties are statistical and systematic, respectively. Using these observables together with a recent measurement of the Bs0_{s}^{0} mixing phase −2βs_{s} leads to the first extraction of the CKM angle γ from Bs0_{s}^{0}  → Ds_{s}^{∓} K±^{±} decays, finding γ = (11543+28_{− 43}^{+ 28} )° modulo 180° at 68% CL, where the error contains both statistical and systematic uncertainties.We report on measurements of the time-dependent CP violating observables in Bs0DsK±B^0_s\rightarrow D^{\mp}_s K^{\pm} decays using a dataset corresponding to 1.0 fb1^{-1} of pp collisions recorded with the LHCb detector. We find the CP violating observables Cf=0.53±0.25±0.04C_f=0.53\pm0.25\pm0.04, AfΔΓ=0.37±0.42±0.20A^{\Delta\Gamma}_f=0.37\pm0.42\pm0.20, AfˉΔΓ=0.20±0.41±0.20A^{\Delta\Gamma}_{\bar{f}}=0.20\pm0.41\pm0.20, Sf=1.09±0.33±0.08S_f=-1.09\pm0.33\pm0.08, Sfˉ=0.36±0.34±0.08S_{\bar{f}}=-0.36\pm0.34\pm0.08, where the uncertainties are statistical and systematic, respectively. Using these observables together with a recent measurement of the Bs0B^0_s mixing phase 2βs-2\beta_s leads to the first extraction of the CKM angle γ\gamma from Bs0DsK±B^0_s \rightarrow D^{\mp}_s K^{\pm} decays, finding γ\gamma = (11543+28_{-43}^{+28})^\circ modulo 180^\circ at 68% CL, where the error contains both statistical and systematic uncertainties

    Measurement of Upsilon production in collisions at root s=2.76 TeV

    Get PDF
    The production of Υ(1S)\Upsilon(1S), Υ(2S)\Upsilon(2S) and Υ(3S)\Upsilon(3S) mesons decaying into the dimuon final state is studied with the LHCb detector using a data sample corresponding to an integrated luminosity of 3.3 pb1pb^{-1} collected in proton-proton collisions at a centre-of-mass energy of s=2.76\sqrt{s}=2.76 TeV. The differential production cross-sections times dimuon branching fractions are measured as functions of the Υ\Upsilon transverse momentum and rapidity, over the ranges $p_{\rm T} Upsilon(1S) X) x B(Upsilon(1S) -> mu+mu-) = 1.111 +/- 0.043 +/- 0.044 nb, sigma(pp -> Upsilon(2S) X) x B(Upsilon(2S) -> mu+mu-) = 0.264 +/- 0.023 +/- 0.011 nb, sigma(pp -> Upsilon(3S) X) x B(Upsilon(3S) -> mu+mu-) = 0.159 +/- 0.020 +/- 0.007 nb, where the first uncertainty is statistical and the second systematic

    Study of forward Z + jet production in pp collisions at √s=7 TeV

    Get PDF
    A measurement of the Z(μ+μ)Z(\rightarrow\mu^+\mu^-)+jet production cross-section in pppp collisions at a centre-of-mass energy s=7\sqrt{s} = 7 TeV is presented. The analysis is based on an integrated luminosity of 1.0fb11.0\,\text{fb}^{-1} recorded by the LHCb experiment. Results are shown with two jet transverse momentum thresholds, 10 and 20 GeV, for both the overall cross-section within the fiducial volume, and for six differential cross-section measurements. The fiducial volume requires that both the jet and the muons from the Z boson decay are produced in the forward direction (2.0<η<4.52.0<\eta<4.5). The results show good agreement with theoretical predictions at the second-order expansion in the coupling of the strong interaction.A measurement of the Z(μ+μ)Z(\rightarrow\mu^+\mu^-)+jet production cross-section in pppp collisions at a centre-of-mass energy s=7\sqrt{s} = 7 TeV is presented. The analysis is based on an integrated luminosity of 1.0fb11.0\,\text{fb}^{-1} recorded by the LHCb experiment. Results are shown with two jet transverse momentum thresholds, 10 and 20 GeV, for both the overall cross-section within the fiducial volume, and for six differential cross-section measurements. The fiducial volume requires that both the jet and the muons from the Z boson decay are produced in the forward direction (2.0<η<4.52.0<\eta<4.5). The results show good agreement with theoretical predictions at the second-order expansion in the coupling of the strong interaction

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Mechanical Thrombectomy for Acute Ischemic Stroke Amid the COVID-19 Outbreak

    No full text
    International audienceBackground and Purpose: The efficiency of prehospital care chain response and the adequacy of hospital resources are challenged amid the coronavirus disease 2019 (COVID-19) outbreak, with suspected consequences for patients with ischemic stroke eligible for mechanical thrombectomy (MT). Methods: We conducted a prospective national-level data collection of patients treated with MT, ranging 45 days across epidemic containment measures instatement, and of patients treated during the same calendar period in 2019. The primary end point was the variation of patients receiving MT during the epidemic period. Secondary end points included care delays between onset, imaging, and groin puncture. To analyze the primary end point, we used a Poisson regression model. We then analyzed the correlation between the number of MTs and the number of COVID-19 cases hospitalizations, using the Pearson correlation coefficient (compared with the null value). Results: A total of 1513 patients were included at 32 centers, in all French administrative regions. There was a 21% significant decrease (0.79; [95%CI, 0.76–0.82]; P <0.001) in MT case volumes during the epidemic period, and a significant increase in delays between imaging and groin puncture, overall (mean 144.9±SD 86.8 minutes versus 126.2±70.9; P <0.001 in 2019) and in transferred patients (mean 182.6±SD 82.0 minutes versus 153.25±67; P <0.001). After the instatement of strict epidemic mitigation measures, there was a significant negative correlation between the number of hospitalizations for COVID and the number of MT cases ( R 2 −0.51; P =0.04). Patients treated during the COVID outbreak were less likely to receive intravenous thrombolysis and to have unwitnessed strokes (both P <0.05). Conclusions: Our study showed a significant decrease in patients treated with MTs during the first stages of the COVID epidemic in France and alarming indicators of lengthened care delays. These findings prompt immediate consideration of local and regional stroke networks preparedness in the varying contexts of COVID-19 pandemic evolution

    Precision luminosity measurements at LHCb

    No full text
    Measuring cross-sections at the LHC requires the luminosity to be determined accurately at each centre-of-mass energy s\sqrt{s}. In this paper results are reported from the luminosity calibrations carried out at the LHC interaction point 8 with the LHCb detector for s\sqrt{s} = 2.76, 7 and 8 TeV (proton-proton collisions) and for sNN\sqrt{s_{NN}} = 5 TeV (proton-lead collisions). Both the "van der Meer scan" and "beam-gas imaging" luminosity calibration methods were employed. It is observed that the beam density profile cannot always be described by a function that is factorizable in the two transverse coordinates. The introduction of a two-dimensional description of the beams improves significantly the consistency of the results. For proton-proton interactions at s\sqrt{s} = 8 TeV a relative precision of the luminosity calibration of 1.47% is obtained using van der Meer scans and 1.43% using beam-gas imaging, resulting in a combined precision of 1.12%. Applying the calibration to the full data set determines the luminosity with a precision of 1.16%. This represents the most precise luminosity measurement achieved so far at a bunched-beam hadron collider.Measuring cross-sections at the LHC requires the luminosity to be determined accurately at each centre-of-mass energy √s. In this paper results are reported from the luminosity calibrations carried out at the LHC interaction point 8 with the LHCb detector for √s = 2.76, 7 and 8 TeV (proton-proton collisions) and for √s(NN) = 5 TeV (proton-lead collisions). Both the 'van der Meer scan' and 'beam-gas imaging' luminosity calibration methods were employed. It is observed that the beam density profile cannot always be described by a function that is factorizable in the two transverse coordinates. The introduction of a two-dimensional description of the beams improves significantly the consistency of the results. For proton-proton interactions at √s = 8 TeV a relative precision of the luminosity calibration of 1.47% is obtained using van der Meer scans and 1.43% using beam-gas imaging, resulting in a combined precision of 1.12%. Applying the calibration to the full data set determines the luminosity with a precision of 1.16%. This represents the most precise luminosity measurement achieved so far at a bunched-beam hadron collider.Measuring cross-sections at the LHC requires the luminosity to be determined accurately at each centre-of-mass energy s\sqrt{s}. In this paper results are reported from the luminosity calibrations carried out at the LHC interaction point 8 with the LHCb detector for s\sqrt{s} = 2.76, 7 and 8 TeV (proton-proton collisions) and for sNN\sqrt{s_{NN}} = 5 TeV (proton-lead collisions). Both the "van der Meer scan" and "beam-gas imaging" luminosity calibration methods were employed. It is observed that the beam density profile cannot always be described by a function that is factorizable in the two transverse coordinates. The introduction of a two-dimensional description of the beams improves significantly the consistency of the results. For proton-proton interactions at s\sqrt{s} = 8 TeV a relative precision of the luminosity calibration of 1.47% is obtained using van der Meer scans and 1.43% using beam-gas imaging, resulting in a combined precision of 1.12%. Applying the calibration to the full data set determines the luminosity with a precision of 1.16%. This represents the most precise luminosity measurement achieved so far at a bunched-beam hadron collider
    corecore