21 research outputs found

    Rapid Bursts of \u3ci\u3eAndrogen-Binding Protein (Abp)\u3c/i\u3e Gene Duplication Occurred Independently in Diverse Mammals

    Get PDF
    Background The draft mouse (Mus musculus) genome sequence revealed an unexpected proliferation of gene duplicates encoding a family of secretoglobin proteins including the androgen-binding protein (ABP) α, β and γ subunits. Further investigation of 14 α-like (Abpa) and 13 β- or γ-like (Abpbg) undisrupted gene sequences revealed a rich diversity of developmental stage-, sex- and tissue-specific expression. Despite these studies, our understanding of the evolution of this gene family remains incomplete. Questions arise from imperfections in the initial mouse genome assembly and a dearth of information about the gene family structure in other rodents and mammals. Results Here, we interrogate the latest \u27finished\u27 mouse (Mus musculus) genome sequence assembly to show that the Abp gene repertoire is, in fact, twice as large as reported previously, with 30 Abpa and 34 Abpbg genes and pseudogenes. All of these have arisen since the last common ancestor with rat (Rattus norvegicus). We then demonstrate, by sequencing homologs from species within the Mus genus, that this burst of gene duplication occurred very recently, within the past seven million years. Finally, we survey Abp orthologs in genomes from across the mammalian clade and show that bursts of Abp gene duplications are not specific to the murid rodents; they also occurred recently in the lagomorph (rabbit, Oryctolagus cuniculus) and ruminant (cattle, Bos taurus) lineages, although not in other mammalian taxa. Conclusion We conclude that Abp genes have undergone repeated bursts of gene duplication and adaptive sequence diversification driven by these genes\u27 participation in chemosensation and/or sexual identification

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Proterozoic accretionary tectonics in the east Kimberley region, Australia

    No full text
    The east Kimberley region contains well-preserved tectonic structure dating back to the Earth's most significant stage of continental growth: the assembly of the Nuna supercontinent. An integrated geological-geophysical investigation of this region has been conducted and reveals insight into its tectonic evolution, including potential influence of significant crustal-scale structures in the development of regional architecture, the emplacement of magma, and the relationship of these structures to large-scale deformation. Some newly interpreted features include a north-trending structure, and three north-west trending structures that segment the north-east trending orogen. The central segment of the orogen is a zone of higher metamorphic grade, and is host to a distinct gravity high. This gravity high can be explained by excess mass in the mid-crust. This anomaly is consistent with either a large mafic-ultramafic intrusion or a high-density crustal fragment. Possible tectonic models to explain the geophysical and metamorphic anomalies involve, in the latter case, the accretion of a crustal fragment to the Kimberley Craton prior to the 1865-1850 Ma H ooper Orogeny or, in the former case, intrusion of voluminous mafic magmas into the middle crust. Whether by igneous or structural means, we consider the development of this anomalous region to be a result of along-strike variations in subduction dynamics. These were perhaps driven by variations in slab-geometry accommodated by the orogen-normal structures we identify. The orogen-normal structures are interpreted to be crustal-scale faults, along which significant vertical displacement occurred when a crustal fragment collided with Kimberley Craton and exhumed high-grade metamorphic rocks to the surface
    corecore