189 research outputs found

    Sources and Secondary Production of Organic Aerosols in the Northeastern United States during WINTER

    Get PDF
    Most intensive field studies investigating aerosols have been conducted in summer, and thus, wintertime aerosol sources and chemistry are comparatively poorly understood. An aerosol mass spectrometer was flown on the National Science Foundation/National Center for Atmospheric Research C‐130 during the Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER) 2015 campaign in the northeast United States. The fraction of boundary layer submicron aerosol that was organic aerosol (OA) was about a factor of 2 smaller than during a 2011 summertime study in a similar region. However, the OA measured in WINTER was almost as oxidized as OA measured in several other studies in warmer months of the year. Fifty‐eight percent of the OA was oxygenated (secondary), and 42% was primary (POA). Biomass burning OA (likely from residential heating) was ubiquitous and accounted for 33% of the OA mass. Using nonvolatile POA, one of two default secondary OA (SOA) formulations in GEOS‐Chem (v10‐01) shows very large underpredictions of SOA and O/C (5×) and overprediction of POA (2×). We strongly recommend against using that formulation in future studies. Semivolatile POA, an alternative default in GEOS‐Chem, or a simplified parameterization (SIMPLE) were closer to the observations, although still with substantial differences. A case study of urban outflow from metropolitan New York City showed a consistent amount and normalized rate of added OA mass (due to SOA formation) compared to summer studies, although proceeding more slowly due to lower OH concentrations. A box model and SIMPLE perform similarly for WINTER as for Los Angeles, with an underprediction at ages \u3c6 hr, suggesting that fast chemistry might be missing from the models

    Impaired perception of facial motion in autism spectrum disorder

    Get PDF
    Copyright: © 2014 O’Brien et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.This article has been made available through the Brunel Open Access Publishing Fund.Facial motion is a special type of biological motion that transmits cues for socio-emotional communication and enables the discrimination of properties such as gender and identity. We used animated average faces to examine the ability of adults with autism spectrum disorders (ASD) to perceive facial motion. Participants completed increasingly difficult tasks involving the discrimination of (1) sequences of facial motion, (2) the identity of individuals based on their facial motion and (3) the gender of individuals. Stimuli were presented in both upright and upside-down orientations to test for the difference in inversion effects often found when comparing ASD with controls in face perception. The ASD group’s performance was impaired relative to the control group in all three tasks and unlike the control group, the individuals with ASD failed to show an inversion effect. These results point to a deficit in facial biological motion processing in people with autism, which we suggest is linked to deficits in lower level motion processing we have previously reported

    Evaluating the London 2012 Games’ impact on sport participation in a non-hosting region: a practical application of realist evaluation

    Get PDF
    In the literature on Olympic legacies and impacts, there is a dearth of materials that specifically address the issue of Olympic impact for non-hosting regions. The literature tends to deal with impacts at a national level, or at a hosting-city region level, neglecting in large part the degree to which benefits can be leveraged by non-hosting regions. A further limitation identified in the literature is a failure to engage in detailed formal evaluation of policy implementation where assertions of potential policy impact are based on untested assumptions. This study is intended to address both of these concerns. It presents an empirical, ‘bottom-up’ application of a Realist Evaluation framework to assess the impact of a policy initiative – Workplace Challenge – aimed at leveraging enhanced sports participation in a non-hosting region – Leicestershire – in the period leading up to the 2012 Games. In doing so, it seeks to identify which causal mechanisms worked within this particular context to produce the observed outcomes. The evaluation results demonstrate that the programme represented a positive approach to fostering regular engagement with sport and physical activities for some groups in some types of organisations, and that awareness and motivational factors associated with the London 2012 Games are, in this case, linked (albeit weakly) to an increase in sport and physical activity participation for specific groups taking part in the programme in particular organisational contexts

    Evidence for dark energy from the cosmic microwave background alone using the Atacama Cosmology Telescope lensing measurements

    Full text link
    For the first time, measurements of the cosmic microwave background radiation (CMB) alone favor cosmologies with w=1w=-1 dark energy over models without dark energy at a 3.2-sigma level. We demonstrate this by combining the CMB lensing deflection power spectrum from the Atacama Cosmology Telescope with temperature and polarization power spectra from the Wilkinson Microwave Anisotropy Probe. The lensing data break the geometric degeneracy of different cosmological models with similar CMB temperature power spectra. Our CMB-only measurement of the dark energy density ΩΛ\Omega_\Lambda confirms other measurements from supernovae, galaxy clusters and baryon acoustic oscillations, and demonstrates the power of CMB lensing as a new cosmological tool.Comment: 4 pages, 3 figures; replaced with version accepted by Physical Review Letters, added sentence on models with non-standard primordial power spectr

    The Atacama Cosmology Telescope: Sunyaev-Zel'dovich Selected Galaxy Clusters at 148 GHz from Three Seasons of Data

    Full text link
    [Abridged] We present a catalog of 68 galaxy clusters, of which 19 are new discoveries, detected via the Sunyaev-Zel'dovich effect (SZ) at 148 GHz in the Atacama Cosmology Telescope (ACT) survey of 504 square degrees on the celestial equator. A subsample of 48 clusters within the 270 square degree region overlapping SDSS Stripe 82 is estimated to be 90% complete for M_500c > 4.5e14 Msun and 0.15 < z < 0.8. While matched filters are used to detect the clusters, the sample is studied further through a "Profile Based Amplitude Analysis" using a single filter at a fixed \theta_500 = 5.9' angular scale. This new approach takes advantage of the "Universal Pressure Profile" (UPP) to fix the relationship between the cluster characteristic size (R_500) and the integrated Compton parameter (Y_500). The UPP scalings are found to be nearly identical to an adiabatic model, while a model incorporating non-thermal pressure better matches dynamical mass measurements and masses from the South Pole Telescope. A high signal to noise ratio subsample of 15 ACT clusters is used to obtain cosmological constraints. We first confirm that constraints from SZ data are limited by uncertainty in the scaling relation parameters rather than sample size or measurement uncertainty. We next add in seven clusters from the ACT Southern survey, including their dynamical mass measurements based on galaxy velocity dispersions. In combination with WMAP7 these data simultaneously constrain the scaling relation and cosmological parameters, yielding \sigma_8 = 0.829 \pm 0.024 and \Omega_m = 0.292 \pm 0.025. The results include marginalization over a 15% bias in dynamical mass relative to the true halo mass. In an extension to LCDM that incorporates non-zero neutrino mass density, we combine our data with WMAP7+BAO+Hubble constant measurements to constrain \Sigma m_\nu < 0.29 eV (95% C. L.).Comment: 32 pages, 21 figures To appear in J. Cosmology and Astroparticle Physic

    The Atacama Cosmology Telescope: Temperature and Gravitational Lensing Power Spectrum Measurements from Three Seasons of Data

    Get PDF
    We present the temperature power spectra of the cosmic microwave background (CMB) derived from the three seasons of data from the Atacama Cosmology Telescope (ACT) at 148 GHz and 218 GHz, as well as the cross-frequency spectrum between the two channels. We detect and correct for contamination due to the Galactic cirrus in our equatorial maps. We present the results of a number of tests for possible systematic error and conclude that any effects are not significant compared to the statistical errors we quote. Where they overlap, we cross-correlate the ACT and the South Pole Telescope (SPT) maps and show they are consistent. The measurements of higher-order peaks in the CMB power spectrum provide an additional test of the Lambda CDM cosmological model, and help constrain extensions beyond the standard model. The small angular scale power spectrum also provides constraining power on the Sunyaev-Zel'dovich effects and extragalactic foregrounds. We also present a measurement of the CMB gravitational lensing convergence power spectrum at 4.6-sigma detection significance.Comment: 21 pages; 20 figures, Submitted to JCAP, some typos correcte

    The Atacama Cosmology Telescope: Two-Season ACTPol Lensing Power Spectrum

    Get PDF
    We report a measurement of the power spectrum of cosmic microwave background (CMB) lensing from two seasons of Atacama Cosmology Telescope Polarimeter (ACTPol) CMB data. The CMB lensing power spectrum is extracted from both temperature and polarization data using quadratic estimators. We obtain results that are consistent with the expectation from the best-fit Planck LCDM model over a range of multipoles L=80-2100, with an amplitude of lensing A_lens = 1.06 +/- 0.15 (stat.) +/- 0.06 (sys.) relative to Planck. Our measurement of the CMB lensing power spectrum gives sigma_8 Omega_m^0.25 = 0.643 +/- 0.054; including baryon acoustic oscillation scale data, we constrain the amplitude of density fluctuations to be sigma_8 = 0.831 +/- 0.053. We also update constraints on the neutrino mass sum. We verify our lensing measurement with a number of null tests and systematic checks, finding no evidence of significant systematic errors. This measurement relies on a small fraction of the ACTPol data already taken; more precise lensing results can therefore be expected from the full ACTPol dataset.Comment: 17 pages, 11 figures, to be submitted to Physical Review

    Detection of the Power Spectrum of Cosmic Microwave Background Lensing by the Atacama Cosmology Telescope

    Full text link
    We report the first detection of the gravitational lensing of the cosmic microwave background through a measurement of the four-point correlation function in the temperature maps made by the Atacama Cosmology Telescope. We verify our detection by calculating the levels of potential contaminants and performing a number of null tests. The resulting convergence power spectrum at 2-degree angular scales measures the amplitude of matter density fluctuations on comoving length scales of around 100 Mpc at redshifts around 0.5 to 3. The measured amplitude of the signal agrees with Lambda Cold Dark Matter cosmology predictions. Since the amplitude of the convergence power spectrum scales as the square of the amplitude of the density fluctuations, the 4-sigma detection of the lensing signal measures the amplitude of density fluctuations to 12%.Comment: 4 pages, 4 figures, replaced title and author list with version accepted by Physical Review Letters. Likelihood code can be downloaded from http://bccp.lbl.gov/~sudeep/ACTLensLike.htm
    corecore