12,546 research outputs found

    Magnetoelectric coupling in MnTiO3

    Get PDF
    We give general arguments that show that the linear magnetoelectric effect in antiferromagnetic materials gives rise to a magnetocapacitance anomaly—a divergence of the dielectric constant at the magnetic ordering temperature TN that appears in an applied magnetic field. The measurement of magnetodielectric response thus provides a definitive and experimentally accessiblemethod to recognize antiferromagnetic linear magnetoelectric materials, circumventing the experimental difficulties often involved in measuring electric polarization. We confirm this result experimentally using the example of MnTiO3, which we show to exhibit the linear magnetoelectric effect. No dielectric anomaly is observed at TN in the absence of an applied magnetic field. However, a sharp peak in the dielectric constant appears here when a magnetic field is applied along the c axis, reflecting a linear coupling of the polarization P with the antiferromagnetic order parameter L. In accordance with our theoretical analysis, the dielectric constant close to TN increases with the square of the magnetic field.

    Web-Scale Workflow: Integrating Distributed Services

    Get PDF
    Modular applications, components, and services are all ways of describing the product of an organization\u27s efforts to embody its capabilities in autonomous software modules. In fact, the integration of services using well-established workflow paradigms could amplify an organization\u27s capabilities with the creation of a full-blown, inter-organizational system of systems. This is the essence of Web-scale workflows. Considering the recent popularity and acceptance of service-oriented technologies, the application of such distributed systems is only limited by imagination, but it\u27s also important to understand existing research challenges and their implications to various Web-scale workflow domains

    Infrared spectroscopy of hole doped ABA-stacked trilayer graphene

    Full text link
    Using infrared spectroscopy, we investigate bottom gated ABA-stacked trilayer graphene subject to an additional environment-induced p-type doping. We find that the Slonczewski-Weiss-McClure tight-binding model and the Kubo formula reproduce the gate voltage-modulated reflectivity spectra very accurately. This allows us to determine the charge densities and the potentials of the {\pi}-band electrons on all graphene layers separately and to extract the interlayer permittivity due to higher energy bands.Comment: 6 pages, 6 figures Corrected sign of fig 3 and visibilty of fig

    Multipoint, high time resolution galactic cosmic ray observations associated with two interplanetary coronal mass ejections

    Get PDF
    [1] Galactic cosmic rays (GCRs) play an important role in our understanding of the interplanetary medium (IPM). The causes of their short timescale variations, however, remain largely unexplored. In this paper, we compare high time resolution, multipoint space-based GCR data to explore structures in the IPM that cause these variations. To ensure that features we see in these data actually relate to conditions in the IPM, we look for correlations between the GCR time series from two instruments onboard the Polar and INTEGRAL (International Gamma Ray Astrophysical Laboratory) satellites, respectively inside and outside Earth\u27s magnetosphere. We analyze the period of 18–24 August 2006 during which two interplanetary coronal mass ejections (ICMEs) passed Earth and produced a Forbush decrease (Fd) in the GCR flux. We find two periods, for a total of 10 h, of clear correlation between small-scale variations in the two GCR time series during these 7 days, thus demonstrating that such variations are observable using space-based instruments. The first period of correlation lasted 6 h and began 2 h before the shock of the first ICME passed the two spacecraft. The second period occurred during the initial decrease of the Fd, an event that did not conform to the typical one- or two-step classification of Fds. We propose that two planar magnetic structures preceding the first ICME played a role in both periods: one structure in driving the first correlation and the other in initiating the Fd

    Time lag between prompt optical emission and gamma-rays in GRBs

    Full text link
    The prompt optical emission contemporaneous with the γ\gamma-rays from γ\gamma-ray bursts (GRBs) carries important information on the central engine and explosion mechanism. We study the time lag between prompt optical emission and γ\gamma-rays in GRB 990123 and GRB 041219a, which are the only two GRBs had been detected at optical wavelengths during the ascending burst phase. Assuming profiles of prompt optical light curves are the same as the prompt γ\gamma-rays, we simulate optical light curves with different time lags and compare them with the observed optical flux. Then the best fit time lag and its error are determined by chi-squared values. We find that time lags between prompt optical emission and γ\gamma-rays in GRB host galaxy rest-frames are consistent in the two GRBs, which is 5∼75\sim7 s for GRB 990123 and 1∼51\sim5 s for GRB 041219a. This result is consistent with a common origin of prompt optical and γ\gamma-ray emissions in the two GRBs. Based on synchrotron cooling model, we also derive the parameters for the two GRBs.Comment: 4 pages, 3 figures; accepted for publication in A&
    • …
    corecore