12,666 research outputs found
Average features of the muon component of EAS or = 10(17) eV
Three 10 sq m liquid scintillators were situated at approximately 0 m, 150 m and 250 m from the center of the Haverah Park array. The detectors were shielded by lead/barytes giving muon detection thresholds of 317 MeV, 431 MeV and 488 MeV respectively. During part of the operational period the 431 MeV threshold was lowered to 313 MeV for comparison purposes. For risetime measurement fast phototubes were used and the 10% to 70% amplitude time interval was parameterized by T sub 70. A muon lateral density distribution of the form rho mu (R theta) = krho(500)0.94 1/R(1 + R/490)-eta has been fitted to the data for 120 m R 600 m and 0.27 (500) 2.55. The shower size parameter (500) is the water Cerenkov response at 500 m from the core of the extensive air showers (EAS) and is relatable to the primary energy. The results show general consistency
Muon fluctuation studies of EAS 10(17) eV
Fluctuation studies need to compare a parameter which is sensitive to longitudinal fluctuations against a parameter which is insensitive. Cascade calculations indicate that the shower size parameter at Haverah Park, rho (500), and the muon density are insensitive while parameters that significantly reflect the longitudinal development of a particular extensive air shower (EAS) include the muon/water Cerenkov response ratio and the muon arrival time dispersion. This paper presents conclusions based on muon fluctuation studies of EAS measured between 1976 and 1981 at Haverah Park
The muon content of EAS as a function of primary energy
The muon content of extensive air showers (EAS) was measured over the wide primary energy range 10 to the 16th power to 10 to the 20th power eV. It is reported that the relative muon content of EAS decreases smoothly over the energy range 10 to the 17th power to 10 to the 19th power eV and concluded that the primary cosmic ray flux has a constant mass composition over this range. It is also reported that an apparent significant change in the power index occurs below 10 to the 17th power eV rho sub c (250 m) sup 0.78. Such a change indicates a significant change in primary mass composition in this range. The earlier conclusions concerning EAS of energy 10 to the 17th power eV are confirmed. Analysis of data in the 10 to the 16th power - 10 to the 17th power eV range revealed a previously overlooked selection bias in the data set. The full analysis of the complete data set in the energy range 10 to the 16th power - 10 to the 17th power ev with the selection bias eliminated is presented
First energetic neutral atom images from Polar
Energetic neutral atoms are created when energetic magnetospheric ions undergo charge exchange with cold neutral atoms in the Earth\u27s tenuous extended atmosphere (the geocorona). Since they are unaffected by the Earth\u27s magnetic field, these energetic neutrals travel away in straight line trajectories from the points of charge exchange. The remote detection of these particles provides a powerful means through which the global distribution and properties of the geocorona and ring current can be inferred. Due to its 2 × 9 RE polar orbit, the Polar spacecraft provides an excellent platform from which to observe ENAs because it spends much of its time in the polar caps which are usually free from the contaminating energetic charged particles that make observations of ENAs more difficult. In this brief report, we present the first ENA imaging results from Polar. Storm-time ENA images are presented for a northern polar cap apogee pass on August 29, 1996 and for a southern polar cap perigee pass on October 23, 1996. As well, we show with a third event (July 31, 1996) that ENA emissions can also be detected in association with individual substorm
ISO LWS Spectra of T Tauri and Herbig AeBe stars
We present an analysis of ISO-LWS spectra of eight T Tauri and Herbig AeBe young stellar objects.
Some of the objects are in the embedded phase of star-formation, whereas others have cleared their environs
but are still surrounded by a circumstellar disk. Fine-structure lines of [OI] and [CII] are most likely excited by
far-ultraviolet photons in the circumstellar environment rather than high-velocity outflows, based on comparisons
of observed line strengths with predictions of photon-dominated and shock chemistry models. A subset of our
stars and their ISO spectra are adequately explained by models constructed by Chiang & Goldreich (1997) and
Chiang et al. (2001) of isolated, passively heated, flared circumstellar disks. For these sources, the bulk of the
LWS flux at wavelengths longward of 55 µm arises from the disk interior which is heated diffusively by reprocessed
radiation from the disk surface. At 45 µm, water ice emission bands appear in spectra of two of the coolest stars,
and are thought to arise from icy grains irradiated by central starlight in optically thin disk surface layers
The impact of shocks on the chemistry of molecular clouds: high resolution images of chemical differentiation along the NGC1333-IRAS2A outflow
This paper presents a detailed study of the chemistry in the outflow
associated with the low-mass protostar NGC1333-IRAS2A down to 3" (650 AU)
scales. Millimeter-wavelength aperture-synthesis observations from the OVRO and
BIMA interferometers and (sub)millimeter single-dish observations from the
Onsala 20m telescope and CSO are presented. The interaction of the highly
collimated protostellar outflow with a molecular condensation ~15000 AU from
the central protostar is clearly traced by molecular species such as HCN, SiO,
SO, CS, and CH3OH. Especially SiO traces a narrow high velocity component at
the interface between the outflow and the molecular condensation.
Multi-transition single-dish observations are used to distinguish the chemistry
of the shock from that of the molecular condensation and to address the
physical conditions therein. Statistical equilibrium calculations reveal
temperatures of 20 and 70 K for the quiescent and shocked components,
respectively, and densities near 10^6 cm^{-3}. Significant abundance
enhancements of two to four orders of magnitude are found in the shocked region
for molecules such as CH3OH, SiO and the sulfur-bearing molecules. HCO+ is seen
only in the aftermath of the shock consistent with models where it is destroyed
through release of H2O from grain mantles in the shock. N2H+ shows narrow
lines, not affected by the outflow but rather probing the ambient cloud.
Differences in abundances of HCN, H2CO and CS are seen between different
outflow regions and are suggested to be related to differences in the atomic
carbon abundance. Compared to the warm inner parts of protostellar envelopes,
higher abundances of in particular CH3OH and SiO are found in the outflows,
which may be related to density differences between the regions.Comment: 18 pages, 13 figures. Accepted for publication in A&
Photochemical production and loss rates of ozone at Sable Island, Nova Scotia during the North Atlantic Regional Experiment (NARE) 1993 summer intensive
Three weeks of summertime surface‐based chemical and meteorological observations at Sable Island, Nova Scotia during the North Atlantic Regional Experiment (NARE) 1993 summer intensive are used to study instantaneous photochemical production and loss rates of ozone by means of a numerical photochemical model. Results are most sensitive to the averaging scheme of data used to constrain the model and the ambient variability of the measurements. Model simulations driven by a time series of 5 min averaged data, most representative of the chemistry at the site, yield an average net photochemical ozone production of 3.6 ppbv/d. Estimates of net ozone production designed to filter out local sources, by using 1000–1400 LT median values of observations to drive the model and by excluding short‐lived hydrocarbons, give values ranging from 1 to 4 ppbv/d. These positive values of net ozone production within the marine boundary layer over Sable Island demonstrate the impact of polluted continental plumes on the background photochemistry of the region during the intensive. The dominant ambient variables controlling photochemical production and loss rates of ozone at the site during the measurement campaign appear to be levels of nitrogen oxides, ozone, nonmethane hydrocarbons, and solar intensity determined by cloud cover. The model partitioning of nitrogen oxides agrees for the most part with measurements, lending credence to calculated photochemical production and loss rates of ozone as well as inferred levels of peroxy radicals not measured at the site. Discrepancies, however, often occur during episodes of intermittent cloud cover, fog, and rain, suggesting the influence of cloud processes on air masses reaching the site
Generic theory of colloidal transport
We discuss the motion of colloidal particles relative to a two component
fluid consisting of solvent and solute. Particle motion can result from (i) net
body forces on the particle due to external fields such as gravity; (ii) slip
velocities on the particle surface due to surface dissipative phenomena. The
perturbations of the hydrodynamic flow field exhibits characteristic
differences in cases (i) and (ii) which reflect different patterns of momentum
flux corresponding to the existence of net forces, force dipoles or force
quadrupoles. In the absence of external fields, gradients of concentration or
pressure do not generate net forces on a colloidal particle. Such gradients can
nevertheless induce relative motion between particle and fluid. We present a
generic description of surface dissipative phenomena based on the linear
response of surface fluxes driven by conjugate surface forces. In this
framework we discuss different transport scenarios including self-propulsion
via surface slip that is induced by active processes on the particle surface.
We clarify the nature of force balances in such situations.Comment: 22 pages, 1 figur
The Magnetic Electron Ion Spectrometer (MagEIS) Instruments Aboard the Radiation Belt Storm Probes (RBSP) Spacecraft
This paper describes the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the RBSP spacecraft from an instrumentation and engineering point of view. There are four magnetic spectrometers aboard each of the two spacecraft, one low-energy unit (20–240 keV), two medium-energy units (80–1200 keV), and a high-energy unit (800–4800 keV). The high unit also contains a proton telescope (55 keV–20 MeV). The magnetic spectrometers focus electrons within a selected energy pass band upon a focal plane of several silicon detectors where pulse-height analysis is used to determine if the energy of the incident electron is appropriate for the electron momentum selected by the magnet. Thus each event is a two-parameter analysis, an approach leading to a greatly reduced background. The physics of these instruments are described in detail followed by the engineering implementation. The data outputs are described, and examples of the calibration results and early flight data presented
- …