24 research outputs found

    Mercury exposure, nutritional deficiencies and metabolic disruptions may affect learning in children

    Get PDF
    Among dietary factors, learning and behavior are influenced not only by nutrients, but also by exposure to toxic food contaminants such as mercury that can disrupt metabolic processes and alter neuronal plasticity. Neurons lacking in plasticity are a factor in neurodevelopmental disorders such as autism and mental retardation. Essential nutrients help maintain normal neuronal plasticity. Nutritional deficiencies, including deficiencies in the long chain polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid, the amino acid methionine, and the trace minerals zinc and selenium, have been shown to influence neuronal function and produce defects in neuronal plasticity, as well as impact behavior in children with attention deficit hyperactivity disorder. Nutritional deficiencies and mercury exposure have been shown to alter neuronal function and increase oxidative stress among children with autism. These dietary factors may be directly related to the development of behavior disorders and learning disabilities. Mercury, either individually or in concert with other factors, may be harmful if ingested in above average amounts or by sensitive individuals. High fructose corn syrup has been shown to contain trace amounts of mercury as a result of some manufacturing processes, and its consumption can also lead to zinc loss. Consumption of certain artificial food color additives has also been shown to lead to zinc deficiency. Dietary zinc is essential for maintaining the metabolic processes required for mercury elimination. Since high fructose corn syrup and artificial food color additives are common ingredients in many foodstuffs, their consumption should be considered in those individuals with nutritional deficits such as zinc deficiency or who are allergic or sensitive to the effects of mercury or unable to effectively metabolize and eliminate it from the body

    Mercury exposure, nutritional deficiencies and metabolic disruptions may affect learning in children

    Full text link
    Among dietary factors, learning and behavior are influenced not only by nutrients, but also by exposure to toxic food contaminants such as mercury that can disrupt metabolic processes and alter neuronal plasticity. Neurons lacking in plasticity are a factor in neurodevelopmental disorders such as autism and mental retardation. Essential nutrients help maintain normal neuronal plasticity. Nutritional deficiencies, including deficiencies in the long chain polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid, the amino acid methionine, and the trace minerals zinc and selenium, have been shown to influence neuronal function and produce defects in neuronal plasticity, as well as impact behavior in children with attention deficit hyperactivity disorder. Nutritional deficiencies and mercury exposure have been shown to alter neuronal function and increase oxidative stress among children with autism. These dietary factors may be directly related to the development of behavior disorders and learning disabilities. Mercury, either individually or in concert with other factors, may be harmful if ingested in above average amounts or by sensitive individuals. High fructose corn syrup has been shown to contain trace amounts of mercury as a result of some manufacturing processes, and its consumption can also lead to zinc loss. Consumption of certain artificial food color additives has also been shown to lead to zinc deficiency. Dietary zinc is essential for maintaining the metabolic processes required for mercury elimination. Since high fructose corn syrup and artificial food color additives are common ingredients in many foodstuffs, their consumption should be considered in those individuals with nutritional deficits such as zinc deficiency or who are allergic or sensitive to the effects of mercury or unable to effectively metabolize and eliminate it from the body

    Mercury from chlor-alkali plants: measured concentrations in food product sugar

    Get PDF
    Mercury cell chlor-alkali products are used to produce thousands of other products including food ingredients such as citric acid, sodium benzoate, and high fructose corn syrup. High fructose corn syrup is used in food products to enhance shelf life. A pilot study was conducted to determine if high fructose corn syrup contains mercury, a toxic metal historically used as an anti-microbial. High fructose corn syrup samples were collected from three different manufacturers and analyzed for total mercury. The samples were found to contain levels of mercury ranging from below a detection limit of 0.005 to 0.570 micrograms mercury per gram of high fructose corn syrup. Average daily consumption of high fructose corn syrup is about 50 grams per person in the United States. With respect to total mercury exposure, it may be necessary to account for this source of mercury in the diet of children and sensitive populations

    Heat inactivation of Listeria monocytogenes and Salmonella enterica serovar Typhi in a typical bologna matrix during an industrial cooking-cooling cycle

    No full text
    The heat resistance of Salmonella enterica serovar Typhi PF-724 and Listeria monocytogenes 2812 was determined in a commercial bologna batter. The heat inactivation of the two bacterial species was also studied in a semiautomatic pilot smokehouse under cooking conditions that reproduced an industrial bologna process. S. enterica serovar Typhi PF-724 was less heat resistant than L. monocytogenes 2812. The D-values (times required to reduce the population by 1 logarithmic cycle) for S. enterica serovar Typhi PF-724 ranged from 10.11 to 0.04 min for temperatures of 50 to 70 degrees C, while for L. monocytogenes 2812, the D-values were 2.5-, 4.9-, 3.8-, 3.3-, and 2-fold higher at 50, 55, 60, 65, and 70 degrees C, respectively, than for S. enterica serovar Typhi PF-724. However, the z-value (temperature required to reduce log D by 1 logarithmic cycle) for S. enterica serovar Typhi PF-724 (5.72 degrees C) was not significantly different from the z-value for L. monocytogenes 2812 (7.04 degrees C), indicating that a given increase in temperature would have a similar effect on the decimal reduction time for both bacterial species in that meat emulsion. Our data on experimentally inoculated batter also showed that processing bologna at a cooking-cooling cycle commonly used in the industry resulted in a minimum 5-log reduction for both S. enterica serovar Typhi PF-724 and L. monocytogenes 2812

    An Upcycling Tokenization Method for Credit Card Numbers

    Get PDF
    International audienceInternet users are increasingly concerned about their privacy and are looking for ways to protect their data. Additionally, they may rightly fear that companies extract information about them from their online behavior. The so-called tokenization process allows for the use of trusted third-party managed temporary identities, from which no personal data about the user can be inferred. We consider in this paper tokenization systems allowing a customer to hide their credit card number from a webshop. We present here a method for managing tokens in RAM using a table. We refer to our approach as upcycling as it allows for regenerating used tokens by maintaining a table of currently valid tokens. We compare our approach to existing ones and analyze its security. Contrary to the main existing system (Voltage), our table does not increase in size nor slow down over time. The approach we propose satisfies the common specifications of the domain. It is validated by measurements from an implementation. By reaching 70 thousand tries per timeframe, we almost exhaust the possibilities of the "8-digit model" for properly dimensioned systems

    Protocol for emergency dosimetry based on EPR spectrometry on nails

    No full text
    International audienceIn case of an accident involving a large number of victims, most of dosimetric techniques are limited by the necessary short delay of the answer or the invasive sampling. In this specific case, it is very important in a first time and as quick as possible to sort population according to the severity of the exposure. Nevertheless, EPR dosimetry on materials easily sampled on the victims (hairs or nails) may be a pertinent tool. In this context, the objective of this work was to study the EPR properties of nails to propose a first protocol for fast triage of population

    Mercury exposure, nutritional deficiencies and metabolic disruptions may affect learning in children

    No full text
    Abstract Among dietary factors, learning and behavior are influenced not only by nutrients, but also by exposure to toxic food contaminants such as mercury that can disrupt metabolic processes and alter neuronal plasticity. Neurons lacking in plasticity are a factor in neurodevelopmental disorders such as autism and mental retardation. Essential nutrients help maintain normal neuronal plasticity. Nutritional deficiencies, including deficiencies in the long chain polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid, the amino acid methionine, and the trace minerals zinc and selenium, have been shown to influence neuronal function and produce defects in neuronal plasticity, as well as impact behavior in children with attention deficit hyperactivity disorder. Nutritional deficiencies and mercury exposure have been shown to alter neuronal function and increase oxidative stress among children with autism. These dietary factors may be directly related to the development of behavior disorders and learning disabilities. Mercury, either individually or in concert with other factors, may be harmful if ingested in above average amounts or by sensitive individuals. High fructose corn syrup has been shown to contain trace amounts of mercury as a result of some manufacturing processes, and its consumption can also lead to zinc loss. Consumption of certain artificial food color additives has also been shown to lead to zinc deficiency. Dietary zinc is essential for maintaining the metabolic processes required for mercury elimination. Since high fructose corn syrup and artificial food color additives are common ingredients in many foodstuffs, their consumption should be considered in those individuals with nutritional deficits such as zinc deficiency or who are allergic or sensitive to the effects of mercury or unable to effectively metabolize and eliminate it from the body.</p
    corecore