6 research outputs found

    NBA Pre-Draft Combine is the weak predictor of rookie basketball player’s performance

    Get PDF
    The goal of the study was to assess the relationship between rookie player’s Pre-Draft Combine physical abilities and basketball performance in the first NBA season. In strictly homogenized sample of players (N = 58) who matched the inclusion criterion of average playing time and number games in the period 2012-2015, the results indicate that Pre-Draft Combine testing procedures show low to moderate correlations with only few observed basketball performance variables in the first NBA season. The highest correlation was found between upper body strength and number of rebounds (r = .403, p = .002) and blocked shots (r = .333, p = .011). Regression model of Combine performance explained 24.7% of basketball performance with three physical performance tests. Practical application might suggest that some parts of the Combine might be restructured in order to include some other tests more informative tests for the future player performance and player selection.The paper is a part of the project III47015, funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia – Scientific Projects 2011 – 2019

    Performance Analysis of Nonlinear Energy‐Harvesting DF Relay System in Interference‐Limited Nakagami‐

    No full text
    A decode‐and‐forward system with an energy‐harvesting relay is analyzed for the case when an arbitrary number of independent interference signals affect the communication at both the relay and the destination nodes. The scenario in which the relay harvests energy from both the source and interference signals using a time switching scheme is analyzed. The analysis is performed for the interference‐limited Nakagami‐m fading environment, assuming a realistic nonlinearity for the electronic devices. The closed‐form outage probability expression for the system with a nonlinear energy harvester is derived. An asymptotic expression valid for the case of a simpler linear harvesting model is also provided. The derived analytical results are corroborated by an independent simulation model. The impacts of the saturation threshold power, the energy‐harvesting ratio, and the number and power of the interference signals on the system performance are analyzed

    CFD simulations of thermal comfort in naturally ventilated primary school classrooms

    Get PDF
    The purpose of thermal comfort is to speck the combinations of indoor space environment and personal factors that will produce thermal environment conditions acceptable to 80% or more of the occupants within a space. Naturally ventilated indoors has a very complex air movement, which depends on numerous variables such as: outdoor interaction, intensity of infiltration, the number of openings, the thermal inertia of walls, occupant behaviors, etc. The most important mechanism for naturally ventilated indoors is the intensity of infiltration and thermal buoyancy mechanism. In this study the objective was to determine indicators of thermal comfort for children, by the CFD model based on experimental measurements with modification on turbulent and radiant heat transfer mathematical model. The case study was selected on school children of 8 and 9 years in France Presern primary school in Belgrade. The purpose was to evaluate the relationships between the indoor environment and the subjective responses. Also there was analysis of infiltration and stack effect based on meteorological data on site. The main parameters that were investigated are: operative temperature, radiant temperature, concentration of CO2, and air velocity. The new correction of turbulence and radiative heat transfer models has been validated by comparison with experimental data using additional statistical indicators. It was found that both turbulence model correct and the new radiative model of nontransparent media have a significant influence on CFD data set accuracy
    corecore