Accepted Manuscript

Decontamination of incoming beef trimmings with hot lactic acid solution to improve microbial safety of resulting dry fermented sausages – a pilot study

Bojan Blagojevic, Dragan Antic, Bojan Adzic, Tatjana Tasic, Predrag Ikonic, Sava Buncic

PII: S0956-7135(15)00080-8

DOI: 10.1016/j.foodcont.2015.01.047

Reference: JFCO 4288

To appear in: Food Control

Received Date: 10 September 2014

Revised Date: 24 December 2014

Accepted Date: 3 January 2015

Please cite this article as: Blagojevic B., Antic D., Adzic B., Tasic T., Ikonic P. & Buncic S., Decontamination of incoming beef trimmings with hot lactic acid solution to improve microbial safety of resulting dry fermented sausages – a pilot study, *Food Control* (2015), doi: 10.1016/ j.foodcont.2015.01.047.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Decontamination of incoming beef trimmings with hot lactic acid solution to
2	improve microbial safety of resulting dry fermented sausages – a pilot study
3	
4	Bojan Blagojevic ^a , Dragan Antic ^{a#} , Bojan Adzic ^b , Tatjana Tasic ^c , Predrag Ikonic ^c and Sava
5	Buncic ^{a*}
6	
7	^a Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Trg D.
8	Obradovica 8, 21000 Novi Sad, Serbia
9	^b Diagnostic Veterinary Laboratory, Dzordza Vasingtona bb, 81000 Podgorica, Montenegro
10	^c Institute of Food Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad,
11	Serbia
12	
13	[#] Current address: School of Veterinary Science, Faculty of Health and Life Sciences, University
14	of Liverpool, Leahurst, Neston, CH64 7TE, UK
15	
16	*Corresponding author
17	E-mail: buncic_sava@hotmail.com

- *Phone*: +381 21 4853440
- *Fax*: +381 21 6350419

20 Abstract

21 In the study, beef trimmings intended for sausage production were subjected to different 22 decontamination treatments based on lactic acid-hot water combination, with aim to eliminate or 23 reduce foodborne pathogens E. coli O157, Salmonella Typhimurium and Listeria monocytogenes 24 in resultant dry, fermented sausages. In finished sausages, produced from untreated trimmings, 25 "natural" reductions of inoculated E. coli O157 and Salmonella Typhimurium were on average 26 1.9 logs, L. monocytogenes count remained unchanged, and no detectable concentrations of 27 biogenic amines were found. The same type of sausages were also produced by using beef 28 trimmings which was pathogen-inoculated and then decontaminated by: hot, 4% lactic acid in 29 water solution (90°C for 10 s; treatment HLA1); or hot, 4% lactic acid in water solution (85°C 30 for 20 s; treatment HLA2), or hot, 4% lactic acid in water solution (80°C for 30 s; treatment HLA3). The use of HLA-decontaminated beef trimmings resulted in total E. coli O157 31 32 reductions of at least 3.9 logs and in total Salmonella Typhimurium reductions of at least 3.6 33 logs, whilst biogenic amines were not detected in finished sausages. The overall sensorial acceptability of finished sausages produced with HLA-decontaminated beef trimmings was 34 somewhat diminished. Further work is required to optimise the HLA-based incoming beef 35 36 treatments. 37

<u>Keywords</u>: Fermented beef sausages; *Escherichia coli* O157; *Salmonella* Typhimurium; *Listeria monocytogenes*; biogenic amine; starter culture.

2

40 **1. Introduction**

41 The production process of fermented sausages is conducted at relatively high temperatures, 42 which vary with sausage types roughly between 20°C and 40°C, and involves two distinct stages. 43 During the first 2-3 days, the fermentation takes place, which is associated with production of 44 lactic acid (pH drop) by fast-multiplying, microaerophilic lactic acid bacteria (LAB) "replacing" 45 the initial aerobic, psychrotrophic meat microbiota. Subsequently, the maturation, commonly 46 including drying, takes place for time periods varying with sausage type (whether spreadable, 47 semidry or dry) between a few days to a few weeks. The microbial safety and storage stability (shelf-life) of fermented sausages depend on combined effects of multiple antimicrobial factors 48 49 acting in the sausage matrix: acidity (low pH), low water activity (a_w) due to added salt and drying, nitrites, and LAB due to their competitiveness and production of inhibitory compounds 50 such as bacteriocins (Lücke, 2000). Generally, in raw, fermented sausages produced under 51 52 proper and controlled conditions, microbial foodborne pathogens can survive but their counts are 53 reduced and they usually do not multiply. Microbial safety concerns associated with fermented 54 sausages relate to: a) primarily, bacterial foodborne pathogens originating from raw materials 55 used for sausage production (i.e. incoming meat); and b) to a lesser extent, toxic biogenic amines 56 (BA) such as histamine and tyramine produced by background microbiota. 57 A number of outbreaks of toxicoinfections by verocytotoxigenic Escherichia coli (VTEC) associated with consumption of fermented sausages (mainly containing beef, but also 58 59 lamb) have been reported in different countries, as reviewed by Holck et al. (2011). Also,

- 60 consumption of fermented sausages has been associated or epidemiologically linked with other
- 61 foodborne illnesses caused by Staphylococcus aureus (Bacus, 1986), Salmonella (Sauer,
- 62 Majkowski, Green & Eckel, 1997) or Listeria monocytogenes (WHO/FAO, 2004). Literature

63 data clearly indicate that fermented sausages pose an increased potential risk with respect to high 64 content of the main, toxic biogenic amines (BA) histamine and tyramine, and they also can contain other biogenic amines (e.g. putrescine and cadaverine) which are less toxic themselves 65 but can potentiate the toxic effects of the former two (Ruiz-Campilas & Jimenez-Comlenero, 66 2004). BA accumulation is usually related to the decarboxylase activity of contaminant bacteria 67 (e.g. enterobacteria, pseudomonads), but technological bacteria such as LAB may also contribute 68 69 significantly to aminogenesis (Bover-Cid, Izquierdo-Pulido & Vidal-Carou, 2001; Bover-Cid, 70 Hernández-Jover, Miguélez-Arrizado & Vidal-Carou, 2003). Hence, the BA accumulation in 71 fermented sausages can be reduced by using non-BA-forming LAB starter cultures (Bover-Cid et 72 al., 2001). Although no cases of histamine or tyramine intoxications have implicated fermented 73 sausages as vehicles todate, the products may occasionally contain these BA at levels generally considered as toxic (EFSA, 2011), and the lack of the published intoxications may be due to 74 75 underreporting.

76 In respect to the pathogen of particular concern in beef/lamb fermented sausages, VTEC, it is known that it survives the standard fermented sausage production process and a 5-log 77 78 reduction, required by regulation in the USA (Reed, 1995) but not in the EU, cannot be 79 consistently achieved solely through manipulations of product pH, salt/nitrites and a_w levels 80 (Glass, Loeffelholz, Ford & Doyle, 1992). Consequently, various heat treatment regimes, applied 81 to fermented sausages either at the post-fermentation or post-maturation stages of production 82 process and aimed at VTEC-reduction, have been evaluated, as reviewed by Holck et al. (2011). 83 The heat treatment of fermented sausages is often used in practice (and accepted by consumers) 84 in the USA, but is used very rarely, if at all, in Europe.

4

An alternative, more preventative approach to controlling microbial hazards in beef fermented sausages could be decontamination of incoming raw beef; however, no such studies have been published to date. Hence, the main objective of the present study was to evaluate the potential of decontaminating the incoming beef trimmings, based on combined effects of heat and lactic acid, to control the main microbial pathogens and BA in fermented sausages produced from these trimmings.

91

92 **2. Materials and methods**

93 <u>2.1 Inoculation of incoming raw beef</u>

94 Strains of pathogens E. coli O157 (four strains: ATCC 35150 and three strains from our own 95 collection, isolated from bovine intestines), S. Typhimurium (two strains: ATCC 14028 and ATCC 13311) and L. monocytogenes (five strains: ATCC 19112, ATCC 19114, ATCC 19115 96 97 and two strains from our own collection, isolated from beef sausage and from smoked rib eve 98 steak). Multiple strains per pathogen were used to accommodate for well-known between-strain 99 diversity in respect to both growth potential and inactivation dynamics. Each strain was individually grown in mEC+Novobiocin selective enrichment broth (Merck, Germany), 100 101 Rappaport Vassiliadis Broth with soya broth (Merck) and L-PALCAM broth (Merck) at 37°C, 102 41.5°C and 30°C, respectively for 12 hours. Appropriate volumes of each strain were added to 103 distilled water so to obtain multi-pathogen, multi-strain suspension containing approximately 4 104 logs CFU of each pathogen per ml of water. Beef trimmings (pieces roughly 300 g each, chilled 105 at approximately 2°C) were surface inoculated by submersion for 10 s in the suspension of 106 pathogens, and drained for 10-15 minutes.

107

5

- 108 <u>2.2 Decontamination of inoculated beef trimmings</u>
- 109 Inoculated beef trimmings were divided into groups, and each group subjected to one of the
- 110 following surface decontamination treatments:
- 111 (a) hot lactic acid treatment 1 (HLA1): beef trimmings were submerged in hot 4% lactic acid
- 112 water solution (90°C) for 10 s;
- (b) hot lactic acid treatment 2 (HLA2): beef trimmings were submerged in hot 4% lactic acid
- 114 water solution (85° C) for 20 s; and

(c) hot lactic acid treatment 3 (HLA3): beef trimmings were submerged in hot 4% lactic acid in
water solution (80°C) for 30 s.

- 117 Fatty tissue used for sausage production was subjected neither to inoculation nor to
- 118 decontamination treatments described above, because hot water melts the fat and makes the

119 treated fatty tissue unsuitable for production of fermented sausages.

120

121 <u>2.3 Preparation of raw, fermented, dried beef sausages ("Sudzuk" type)</u>

122 Four groups of sausages were prepared: a) by using inoculated but not decontaminated beef

trimmings (control for treatments); b) with inoculated and HLA1-decontaminated beef; c) with

- 124 inoculated and HLA2-decontaminated beef; and d) with inoculated and HLA3-decontaminated
- 125 beef. In addition, within each of groups b), c) and d), some sausages were not inoculated with

126 pathogens, but were subjected to corresponding decontamination treatment (destined for sensory

- 127 panel examination, see below). Apart from differences in the status of incoming beef, as
- 128 indicated above, the formulation and production process for all the sausages were the identical.
- 129 Beef trimmings from leg (45%), beef trimmings from shoulder (45%) and beef fat (10%) were
- 130 chopped in meat mincer (La Minerva A/E22, Italy) and transferred to kneader mixer (Mainca

131	RM20R, Spain). During meat mixing, 2% of commercially-supplied salt for curing (containing
132	sodium nitrite), 0.25% dextrose and 0.8% spices (powdered garlic, black pepper and paprika)
133	were added to the batter in the kneader mixer. Then, a starter culture comprising LAB strains
134	Lactobacillus sakei CTC 41, L. sakei CTC 287, L. sakei CTC 6469 and L. sakei CTC 6626 (all
135	identified as not producing biogenic amines, obtained from Dr. Sara Bover-Cid, Institute for
136	Food and Agricultural Research and Technology-IRTA, Spain) was added at level 4x10 ⁵ of each
137	strain per gram of sausage batter. Subsequently, the sausage batter was stuffed into collagen
138	casings (Koko ø35, Viscofan, Serbia) and sausages were placed in a controlled-environment
139	chamber (Stagionello STG 100 MTF, Italy) and subjected to a fermentation and
140	maturation/drying process for 20 days in total, under the following temperature/relative air
141	humidity conditions: 1 st day - 20°C/92%; 2 nd day - 19°C/86%; 3 rd day - 18°C/80%; 4 th day -
142	17°C/72%; 5 th to 20 th day - 16°C/65%). There were three sausages sampling points during the
143	process: at day 0 (immediately after stuffing into casings), at day 3 (on completion of
144	fermentation) and at day 20 (finished product).
145	
146	2.4 Sampling and sample homogenates preparation
147	Sausage samples (100 g) were placed in homogeniser bags with filters (6x9", Nasco Whirl-Pak,
148	USA), 100 ml of maximum recovery diluent (MRD; Oxoid, UK) was added, and each bag was
149	repeatedly squeezed manually for 5 minutes and further decimal dilutions were made in MRD

- 150 (ISO method 6887-1:1999). Sample homogenates or their appropriate dilutions were used for
- 151 microbiological analysis as described below.
- 152

153 <u>2.5 Determination of Escherichia coli O157</u>

154	For detection of E. coli O157, 25 ml of each sample homogenate was transferred to 225 ml of
155	enrichment medium (mEC+Novobiocin selective enrichment broth; Merck), and incubated at
156	37°C for 18 h, followed by detection of <i>E. coli</i> O157 by using an immunochromatographic rapid
157	test (Singlepath® E. coli O157; Merck). Positive samples were confirmed by streaking onto CT-
158	SMAC (Merck) and incubating at 37°C for 24 h. For direct enumeration of <i>E. coli</i> O157, 1 ml
159	volumes from appropriate sample dilutions were spread onto CT-SMAC (Merck), incubated at
160	37°C for 24 h and the typical colonies were counted.
161	
162	2.6 Determination of Salmonella Typhimurium
163	For detection of S. Typhimurium, 25 ml of each sample homogenate was transferred to 225 ml of
164	buffered peptone water (BPW; Merck), and incubated at 37°C for 24 h. After incubation, 0.1 ml
165	of enrichment medium was transferred into 10 ml of Rappaport Vassiliadis Broth with soya
166	(RVS; Oxoid) and incubated at 41.5°C for 24 hours, followed by detection of Salmonella by
167	using an immunochromatographic rapid test (Singlepath® Salmonella; Merck). Positive samples
168	were confirmed by streaking onto Xylose Lysine Deoxycholate Agar (XLDA; Oxoid) and/or
169	Salmonella Chromogenic Agar (SCA; Oxoid) and/or Brilliant Green Agar (BGA; Oxoid) and
170	incubating at 37°C for 24 hours. For direct enumeration of Salmonella Typhimurium, 1 ml
171	volumes from appropriate sample dilutions were spread onto Xylose Lysine Deoxycholate Agar
172	(XLDA; Oxoid) and/or Salmonella Chromogenic Agar (SCA; Oxoid) and/or Brilliant Green
173	Agar (BGA; Oxoid), incubated at 37°C for 24 hours and the typical colonies were counted.
174	

175 <u>2.7 Determination of *Listeria monocytogenes*</u>

176	For detection of <i>L. monocytogenes</i> , 25 ml of each sample homogenate was transferred to 225 ml
177	of enrichment medium (L-PALCAM broth; Merck), and incubated at 30°C for 24 h. After
178	incubation, 0.1 ml of enrichment medium was transferred into 10 ml of L-PALCAM broth and
179	incubated on 30°C for 24 hours, followed by detection of L. monocytogenes by using an
180	immunochromatographic rapid test (Singlepath® Listeria monocytogenes; Merck). Positive
181	samples were confirmed by streaking onto PALCAM Listeria Selective Agar (Merck) and
182	incubating at 30°C for 24 hours. For direct enumeration of L. monocytogenes, 1 ml volumes from
183	appropriate sample dilutions were spread onto PALCAM Listeria Selective Agar (Merck)
184	incubated at 30°C and the typical colonies were counted after 24 - 48 h.
185	
186	2.8 Determination of lactic acid bacteria count
187	From the sample homogenate, decimal dilutions were made in MRS broth (Biokar Diagnostics,
188	France) and 1 ml volumes from appropriate sample dilutions were spread onto Aerobic Count
189	Plate Petrifilms (3M Health Care, St. Paul, USA). Inoculated Petrifilms and one bag of
190	Anaerocult® C (Merck) were placed into anaerobic jars (Merck) and incubated at 30°C for 48 h,
191	after which the colonies were counted.
192	
193	2.9 Determination of physicochemical parameters in the sausages
194	Water activity was determined by using LabSwift-aw set Euro-plug & BAT (Novasina,
195	Switzerland) and pH was determined using a portable pH meter - Testo 205 (Testo AG,
196	Germany).
197	

198 <u>2.10 Determination of biogenic amines (BA)</u>

199	Each of four BA standards (putrescine dihydrochloride, cadaverine dihydrochloride, histamine
200	dihydrochloride, tyramine hydrochloride; Sigma-Aldrich, Germany) was separately diluted in
201	distilled water to obtain standard BA solutions with concentrations of 100µg/ml. Internal
202	standard was obtained by dissolving 50 mg of 1.7-diaminoheptan (Sigma-Aldrich) in 50 ml of
203	water. Dansyl chloride solution was prepared by dissolving 20 mg of dansyl chloride (Sigma-
204	Aldrich) in 2 ml of acetone. Extraction and derivatization of sausage samples (2 g) was
205	conducted according to Eerola, Hinkkanen, Lindfors & Hirvi (1993), and BA content was
206	determined by High Performance Liquid Chromatography (Agilent 1200 series; Agilent
207	Technologies, USA) according to Tasic et al. (2012).
208	
209	2.11 Sensory analysis
210	Sensory quality parameters (external appearance, cross-cut surface appearance, colour, texture,
211	juiciness, odour, flavour, and overall acceptability) of finished sausages produced from
212	pathogen-uninoculated but HLA1/2/3-treated beef were scored by a trained, eight-member
213	sensory panel using a 1-7 point scale.
214	
215	2.12 Analysis of the results
216	Each sausage group at each sampling point was tested in six replicas. The microbial counts were
217	converted to log CFU per g to normalize the data before further analyses. The means and
218	standard deviations were calculated using MS Excel 2007.
219	

3. Results and discussion

221	No significant differences in dynamics of development/levels of the LAB population,
222	resultant pH drop, or water activity were observed between sausages produced using HLA1-,
223	HLA2- or HLA3-treated beef and control sausages (Table 1). For all the groups of sausages,
224	values obtained for these parameters (Table 1) can be considered as typical for this type of
225	fermented sausage. This also indicates that the multi-strain LAB starter culture functioned well
226	under all the experimental conditions used in this study. When considering the findings from the
227	study outlined below, one should keep in mind that the results are based on six replicas per
228	sampling point, but one batch per group of sausages, so the results do not show whether and how
229	large between-batch variability would have existed.
230	
231	3.1 The effects of incoming beef decontamination on E. coli O157 in sausages
232	In control sausages produced from inoculated but non-decontaminated beef, E. coli O157
233	survived throughout the production process, although the initial level was reduced, on average,
234	by 1.9 logs in the finished product (Table 1). However, the E. coli O157 reduction rates in
235	sausages produced from inoculated and decontaminated beef were comparably much higher
236	(Table 1). In sausages produced by using HLA3-treated beef, no E. coli O157 was found in
237	finished product either by direct plating or by enrichment methods, which indicates that the total
238	pathogen reduction was likely higher than 3.9 logs (the initial concentration in control sausages).
239	In sausages produced by using HLA1-treated beef, no E. coli O157 was found in finished
240	product by direct plating, but it was detected in two sausages (out of 6) by enrichment, which
241	indicates that the total E. coli O157 reduction rate achieved was probably around 3.9 logs (the
242	initial concentration in control sausages). In sausages produced by using HLA2-treated beef,
243	only 0.1 log of <i>E. coli</i> O157 was found in finished product by direct plating, and the pathogen

244 was detected in only one sausage (out of 6) by enrichment, which indicates that the total E. coli 245 O157 reduction rate achieved was probably only slightly lower than 3.9 logs (the initial 246 concentration in control sausages). No other studies on the use of hot water-lactic acid 247 decontamination treatments of incoming raw beef trimmings to control E. coli O157 in 248 fermented sausages have been published to date. On the other hand, treatments of raw meat cuts 249 or trimmings unrelated to fermented sausage production, based on using 2% to 5% lactic acid 250 solutions at temperatures of up to 55°C applied either by spraying or misting, resulted in 251 STEC/VTEC reductions varying between 0.1 and 2.3 log CFU (Echeverry, Brooks, Miller, 252 Collins, Loneragan & Brashears, 2009; Heller et al., 2007; Calicioglu, Kaspar, Buege & 253 Luchansky, 2002; Harris, Miller, Loneragan & Brashears, 2006). However, the decontamination-254 related STEC/VTEC reduction rates achieved on beef cuts/trimmings only and those obtained in finished fermented sausages produced from decontaminated beef trimmings cannot be compared 255 256 directly, at least for two reasons. Firstly, the latter also includes the effects of antimicrobial 257 factors other than decontamination. Secondly, when temperatures of meat decontaminating solutions are above 72°C (as in the present study), the heat applied is a decontaminating 258 259 procedure in itself (EFSA, 2010).

260

<u>3.2 The effects of incoming beef decontamination on Salmonella Typhimurium in sausages</u>
In control sausages produced from inoculated but non-decontaminated beef, Salmonella survived
throughout the production process, but the final count of this pathogen in finished sausages was
on average 1.9 logs lower than the initial count (Table 1). However, in sausages produced by
using any of the HLA1, HLA2 and HLA3 treatments, no Salmonella was found in finished
product either by direct plating or by enrichment methods, which indicates that the Salmonella

267 reduction rates achieved were probably higher than 3.6 logs (the initial concentration in control 268 sausages). No other studies on the use of hot water-lactic acid decontamination treatments of 269 incoming raw beef trimmings to control *Salmonella* in fermented sausages have been published 270 to date. Treatments of raw meat cuts or trimmings unrelated to fermented sausage production, 271 based on using 2% to 5% lactic acid solutions at temperatures of up to 55°C applied either by 272 spraying or misting, resulted in *Salmonella* reductions varying between 0.2 and 1.6 log CFU 273 (Echeverry et al., 2009; Harris et al., 2006). However, these results cannot be directly compared 274 with those from the present study, for the same reasons indicated above for VTEC/STEC 275 reductions. 276 277 3.3 The effects of incoming beef decontamination on *L. monocytogenes* in sausages In control sausages produced from inoculated but non-decontaminated beef, L. monocytogenes 278 279 survived throughout the production process, and the final count of this pathogen in finished 280 sausages was very similar to the initial 2.2 log concentration (Table 1). The results reflect the 281 marked resistance of L. monocytogenes against antimicrobial factors such as low pH, higher salt 282 and lower a_w in general (Buncic & Avery, 2004). Furthermore, the marked survival ability of this 283 pathogen in the same beef fermented sausages ("Sudzuk") was also reported in another study 284 where L. monocytogenes showed either practically no reduction (0.1 log) or only up to 0.9 log 285 (Hwang, Porto-Fett, Juneja, Ingham, Ingham & Luchansky, 2009). In finished sausages produced 286 from decontaminated beef, only small reduction rates (around 0.5 log) were observed (Table 1), 287 and they did not differ significantly between the HLA1, HLA2 and HLA3 treatments. Overall, 288 the efficacy of the three HLA treatments applied to incoming beef in reducing L. monocytogenes 289 in the finished sausages can be considered as unsatisfactory. Nevertheless, considering that L.

290	monocytogenes was unable to grow in the fermented sausages (Table 1), and that it is widely
291	accepted that levels of up to 100 CFU/g (1 log) are considered as tolerable in ready-to-eat foods
292	where it cannot grow (Buncic & Avery, 2004; WHO/FAO, 2004; EC, 2005), total L.
293	monocytogenes elimination from fermented sausages is not an absolute requirement as long as
294	low initial counts and growth prevention are reliably ensured. No other studies on the use of hot
295	water-lactic acid decontamination treatments of incoming beef trimmings to control L.
296	monocytogenes in fermented sausages have been published to date. On the other hand, hot lactic
297	acid treatments (2% LA, 55°C, 30 sec) of raw beef slices unrelated to fermented sausage
298	production resulted in L. monocytogenes reductions varying from 1.4 logs to 2.6 logs
299	(Koutsoumanis et al., 2004; Ikeda, Samelis, Kendall, Smith & Sofos, 2003). However, these
300	results cannot be directly compared with those from the present study, due to large between-
301	studies differences in the experimental design and conditions.
302	
303	3.4 The effects of incoming beef decontamination on biogenic amines content in sausages
304	In the present study, only relatively low concentrations of tyramine, but no histamine, were
305	found in control sausages (with non-decontaminated beef) during the first stage of the production
306	process (Table 2). However, neither tyramine nor histamine were found in finished sausages,
307	regardless of whether they were control sausages (produced with non-decontaminated beef) or
308	were produced with beef treated by any of the three HLA treatments. During the first stage of the
309	production process, relatively low concentrations of cadaverine and putrescine were initially
310	found in control sausages, and only traces were detected in sausages produced with
311	decontaminated beef (Table 2). It is considered that the main reason for the absence of BA in the
312	finished sausages was the use of the starter culture which was comprised of LAB strains

313 previously proven as non-BA-producers; such an effect was also reported previously (Bover-Cid 314 et al., 2001). The LAB starter strains were obviously very competitive and grew very well in the 315 sausages (Table 1), which probably resulted in suppression of growth and/or amine production of wild microbiota in control (untreated) sausages. In sausages produced with decontaminated beef, 316 317 this effect was additionally enhanced by elimination of a significant proportion of the wild 318 microbiota, which would be expected to be potential BA producers. Hence, because BA 319 formation was successfully controlled by our non-BA-producing LAB starter even in the control 320 sausages, any effect of HLA treatment on BA in these sausages could not be measured by 321 comparing HLA treated sausages with control sausages. No other studies on the use of hot water-322 lactic acid decontamination treatments of incoming meat to control BA in fermented sausages 323 have been published.

324

325 <u>3.5 The effects of incoming beef decontamination on sensory acceptability of sausages</u>
326 The overall sensorial acceptability of finished control (non-decontaminated beef) sausages
327 produced under the influence of both wild microbiota and the LAB starter was very good 328 average score 6.2 out of 7 (Table 3). However, the overall acceptability of finished sausages
329 produced with beef decontaminated by any HLA treatment was lower than the control sausages.
330 Those produced with HLA1-treated beef had best overall acceptability (1.6 points lower than the
331 control, but still within the acceptable range for this point scale), followed by HLA2-treated beef

332 sausages (1.8 points lower than the control), whilst HLA3-treated beef sausages had the worst

333 overall acceptability (3.7 points lower than the control). Generally, it seems that the duration of

HLA treatment was more critical for the sensorial acceptability of sausages than the temperature

335 – the shorter the HLA treatment, the better the sensorial acceptability (Table 3).

336 The diminished sensory qualities of the finished fermented sausages due to use of HLA-337 treated beef was probably multifactorial, but at least two potential factors played important role. 338 The first factor was that the heat treatment associated with HLA decontamination changes the 339 surface meat colour from red (fresh meat) to grey-brown (cooked meat), and the latter is 340 unacceptable if it occurs in finished sausages. However, although a change of beef colour occurred immediately after HLA treatments, this was transferred to some extent - but not to the 341 342 full extent – through the production process into the finished sausages. Because only a thin 343 surface layer of the meat changed colour, this undesirable colour was "diluted" by the normal 344 and acceptable red colour of deeper, unaffected parts of meat during the meat chopping in 345 mincing/cutter machines. Also, it is possible that the grey-brown surface layers of treated meat 346 recovered their red colour to some extent due to increased oxygen pressure, when air was forced 347 into the batter during the meat mincing/cutting operations in machines that operated without 348 vacuum. The second factor was the probable elimination of a proportion (but not complete 349 elimination) of the wild microbiota from incoming beef by HLA; wild microbiota plays some 350 role in the development of desirable sensory qualities (Lücke, 2000). The composition of wild 351 microbiota is normally very complex, as is its contribution to the desirable sensory qualities of 352 fermented meats. However, it seems that, in the present study, our multi-strain LAB starter 353 culture played a beneficial role in somewhat nullifying those potentially negative consequences 354 of reduced wild microbiota in incoming beef on the quality of the fermented sausages. 355 Overall, the use of hot lactic acid decontamination treatments of incoming beef 356 significantly reduced E. coli O157 and Salmonella counts (but not L. monocytogenes) and 357 prevented accumulation of toxic BA in resultant raw, fermented, dried sausages. Fatty tissue 358 added to sausage batter (10%) could not be HLA-decontaminated for technological reasons, and

16

359	it is not known whether nor how much it contributed to initial contamination of the sausage
360	batter, or if its contaminating microbiota diminished the pathogen-reduction effects of the HLA-
361	based beef treatments as observed in finished sausages. The overall sensorial quality of finished
362	sausages produced with HLA-decontaminated beef was somewhat reduced, but, importantly,
363	remained in the acceptable category as long as the shorter duration HLA-treatment was used.
364	Further work is required to optimize HLA-based beef decontamination treatments so to improve
365	sensorial acceptability whilst maintaining the marked pathogen reduction in resultant fermented
366	sausages.
367	
368	4. Acknowledgement
369	The study was funded by both the EU (project FOOD-CT2006-36241) and the Serbian Ministry
370	of Science (project TR31034). The authors are grateful to Dr. Sara Bover-Cid (IRTA, Spain) for
371	both provision of the lactic acid starter cultures and scientific comments; and to Prof. Milan
372	Baltic's group (University of Belgrade, Serbia) for help with the sensory evaluation.
373	
374	5. References
375	Bacus, J. N. (1986). Fermented meat and poultry products. In A. M. Pearson & T. R. Dutson
376	(Eds.), Advances in Meat Research. Vol. 2, Meat and Poultry Microbiology, (pp. 123-
377	164). Westport, CT: AVI Publishing.
378	Bover-Cid, S., Izquierdo-Pulido, M., & Vidal-Carou, M.C. (2001). Effectiveness of a
379	Lactobacillus sakei starter culture in the reduction of biogenic amine accumulation as a
380	function of the raw material quality. Journal of Food Protection, 64, 367-373.

381	Bover-Cid, S., Hernández-Jover, T., Miguélez-Arrizado, M.J., & Vidal-Carou, M.C. (2003).
382	Contribution of contaminant enterobacteria and lactic acid bacteria to biogenic amine
383	accumulation in spontaneous fermentation of pork sausages. European Food Research
384	and Technology, 216, 477-482.
385	Calicioglu, M., Kaspar, C.W., Buege, D.R., & Luchansky, J.B. (2002). Effectiveness of spraying
386	with Tween 20 and lactic acid in decontaminating inoculated Escherichia coli O157:H7
387	and indigenous Escherichia coli biotype I on beef. Journal of Food Protection, 65, 26-32.
388	EC (2005). European Commission Regulation 2073/2005 of 15 November 2005 on
389	microbiological criteria for foodstuffs. Official Journal of the European Union, L338, 1-
390	26.
391	Echeverry, A., Brooks, J.C., Miller, M.F., Collins, J.A., Loneragan, G.H., & Brashears, M.M.
392	(2009). Validation of intervention strategies to control Escherichia coli O157:H7 and
393	Salmonella Typhimurium DT 104 in mechanically tenderized and brine-enhanced beef.
394	Journal of Food Protection, 72, 1616-1623.
395	Eerola, S., Hinkkanen, R., Lindfors, E., & Hirvi, T. (1993). Liquid chromatographic
396	determination of biogenic amines in dry sausages. Journal of AOAC International, 76,
397	575-577.
398	EFSA (2011). Scientific Opinion on risk based control of biogenic amine formation in fermented
399	foods. EFSA Journal, 9:2393, 1-93.
400	EFSA (2010). Scientific Opinion on the safety and efficacy of using recycled hot water as a

decontamination technique for meat carcasses. EFSA Journal, 8:1827, 1-69.

401

100	$C_{1} \sim V$	A., Loeffelholz		and ID	P-Doulo	MD ((1002)	Eata a	f Each and als	:
407	\mathbf{U}	A LOPHEIDOLZ		ora i P	<i>w</i> Dovie	VIP (199/1	- Fale O	i <i>Escheric</i> n	171 (2011
102	O1000, 11.1	i, Locitonioiz	,	010, 0.1 .,	$\alpha \nu \sigma, i\sigma, i\sigma, i\sigma, i\sigma, i\sigma, i\sigma, i\sigma, i\sigma, i\sigma, $	11111 1 1	(1//4/	. I uto 0	I Docherien	m con

- 403 O157:H7 as affected by pH or sodium chloride and in fermented, dry sausage. *Applied*404 *and Environmental Microbiology*, *58*, 2513-2516.
- 405 Harris, K., Miller, M.F., Loneragan, G.H., & Brashears, M.M. (2006). Validation of the use of
- 406 organic acids and acidified sodium chlorite to reduce *Escherichia coli* O157 and
- 407 Salmonella Typhimurium in beef trim and ground beef in a simulated processing
 408 environment. Journal of Food Protection, 69, 1802-1807.
- 409 Heller, C.E., Scanga, J.A., Sofos, J.N., Belk, K.E., Warren-Serna, W., Bellinger, G.R., Bacon,
- 410 R.T., Rossman, M.L., & Smith, G.C. (2007). Decontamination of beef subprimal cuts
- 411 intended for blade tenderization or moisture enhancement. *Journal of Food Protection*,
 412 70, 1174-1180.
- 413 Holck, L.A., Axelsson, L., Mari Rode, T., Hoy, M., Mage, I., Alvseike, O., L'abée-Lund, T.M.,
- 414 Omer, M.K., Granum, P.E., & Heir, E. (2011). Reduction of verotoxigenic *Escherichia*415 *coli* in production of fermented sausages: a review. *Meat Science*, 89, 286-295.
- 416 Hwang, C.A., Porto-Fett, A.C, Juneja, V.K., Ingham, S.C., Ingham, B.H., & Luchansky, J.B.
- 417 (2009). Modeling the survival of *Escherichia coli* O157:H7, *Listeria monocytogenes*, and
- 418 *Salmonella* Typhimurium during fermentation, drying, and storage of soudjouk-style
 419 fermented sausage. *International Journal of Food Microbiology*, *129*, 244-252.
- 420 Ikeda, J.S., Samelis, J., Kendall, P.A., Smith, G.C., & Sofos, J.N. (2003). Acid adaptation does
- 421 not promote survival or growth of *Listeria monocytogenes* on fresh beef following acid
 422 and nonacid decontamination treatments. *Journal of Food Protection*, 66, 985-992.
- 423 Koutsoumanis, K., Ashton, L., Geornaras, I., Belk, K.E., Scanga, J.A., Kendall, P.A., Smith,
- 424 G.C., & Sofos, J.N. (2004). Effect of single or sequential hot water and lactic acid

425	decontamination treatments on the survival and growth of Listeria monocytogenes and
426	spoilage microflora during aerobic storage of fresh beef at 4, 10, and 25°C. Journal of
427	Food Protection, 67, 2703–2711.
428	Lücke, F. K. (2000). Fermented meats. In B. M. Lund, T. C. Baird-Parker, & G.W. Gould (Eds.),
429	The microbiological safety and quality of food. Gaithersburg: Aspen Publishers Inc.
430	Reed, C.A. (1995). Approaches for ensuring the safety of dry and semi-dry fermented sausage
431	products. U.S. Department of Agriculture, Food Safety Inspection Service, Washington,
432	D.C., Letter to plant managers of August 21, 1995.
433	Ruiz-Capillas, C., & Jiménez-Colmenero, F. (2004). Biogenic amines in meat and meat products.
434	Critical Reviews in Food Science and Nutrition, 44, 489-499.
435	Sauer, C.J., Majkowski, J., Green, S., & Eckel, R. (1997). Foodborne illness outbreak associated
436	with a semi-dry fermented sausage product. Journal of Food Protection, 60, 1612-1617.
437	Tasic, T., Ikonic, P., Mandic, A., Jokanovic, M., Tomovic, V., Savatic, S., & Petrovic Lj. (2012).
438	Biogenic amines content in traditional dry fermented sausage Petrovská klobása as
439	possible indicator of good manufacturing practice. Food Control, 23, 107–112.
440	WHO/FAO (2004). Risk assessment of Listeria monocytogenes in ready-to-eat foods. Food and
441	Agriculture Organisation, Rome, Italy.

442 Table 1. The effects of decontamination treatments of incoming beef on microbiological and physicochemical parameters of

443 fermented sausages during the production process

Treatments of	Lactic	E. coli O157	S. Typhimurium	L.	Water	рН
inoculated* raw	acid	mean log CFU/g±SD	mean log CFU/g±SD	monocytogenes	activity	mean
meat for sausage	bacteria	(number of	(number of	mean log	(a _w)	$\pm SD$
production (by	mean log	enrichment-method	enrichment-method	CFU/g±SD	mean	
4% hot lactic	CFU/g	positive sausages out	positive sausages out		±SD	
acid; HLA)	±SD	of 6 tested)**	of 6 tested)**			
Control			· · · · ·		0.978±	5.59±
(untreated; n=6)	6.7±0.1	3.9±0.2	3.6±0.4	2.2±0.1	0.001	0.09
HLA1		12.01/0	0.5.0.5(6)	10.00	0.979±	5.26±
(90°C/10 s; n=6)	6.2±0.2	1.2±0.1(6)	0.5±0.5(6)	1.9±0.2	0.003	0.07
HLA2	65.02		0.1.0.2/5	20.02	0.979±	5.21±
(85°C/20 s; n=6)	6.5±0.3	0.1±0.2(6)	0.1±0.3(5)	2.0±0.3	0.001	0.06
HLA3	5 0 0 5	0.7.0.5(())	0.1.0.1(5)	10.02	$0.978\pm$	5.24±
(80°C/30 s; n=6)	5.9±0.5	0.7±0.5(6)	0.1±0.1(5)	1.9±0.2	0.001	0.03
Control	8.5±0.1	3.5±0.1	2.4±0.2	2.0±0.1	$0.970\pm$	5.05±
	inoculated* raw meat for sausage production (by 4% hot lactic acid; HLA) Control (untreated; n=6) HLA1 (90°C/10 s; n=6) HLA2 (85°C/20 s; n=6) HLA3 (80°C/30 s; n=6)	inoculated* raw acid meat for sausage bacteria production (by mean log fwhot lactic CFU/g acid; HLA2 (untreated; n=6) HLA2 (90°C/10 s; n=6) HLA2 (85°C/20 s; n=6) Acid (80°C/30 s; n=6)	inoculated* raw acid mean log CFU/g±SD meat for sausage bacteria (number of production (by mean log enrichment-method 4% hot lactic CFU/g positive sausages out acid; HLA) ±SD of 6 tested)** Control 6.7±0.1 3.9±0.2 (untreated; n=6) 1.2±0.1(6) HLA1 6.2±0.2 1.2±0.1(6) (80°C/10 s; n=6) 1.2±0.3 (85°C/20 s; n=6) 0.1±0.2(6) (80°C/30 s; n=6)	inoculated* rawacidmean log CFU/g±SDmean log CFU/g±SDmeat for sausagebacteria(number of(number ofproduction (bymean logenrichment-methodenrichment-method4% hot lacticCFU/gpositive sausages outpositive sausages outacid; HLA) \pm SDof 6 tested)**of 6 tested)*Control -6.7 ± 0.1 3.9 ± 0.2 3.6 ± 0.4 (untreated; n=6) -6.7 ± 0.1 3.9 ± 0.2 3.6 ± 0.4 HLA1 -6.2 ± 0.2 $1.2\pm0.1(6)$ $0.5\pm0.5(6)$ (90°C/10 s; n=6) -6.2 ± 0.3 $0.1\pm0.2(6)$ $0.1\pm0.3(5)$ HLA3 -6.5 ± 0.3 $0.1\pm0.2(6)$ $0.1\pm0.3(5)$ (80°C/30 s; n=6) 5.9 ± 0.5 $0.7\pm0.5(6)$ $0.1\pm0.1(5)$	inoculated* rawacidmean log CFU/g±SDmean log CFU/g±SDmonocytogenesmeat for sausagebacteria(number of(number ofmean logproduction (bymean logenrichment-methodenrichment-methodCFU/g±SD4% hot lacticCFU/gpositive sausages outpositive sausages outpositive sausages outcFU/g±SD4% hot lacticCFU/gpositive sausages outpositive sausages outof 6 tested)**cFU/g±SDControl 0.1 ± 0.1 0.1 ± 0.2 0.6 ± 0.3 0.1 ± 0.2 0.6 ± 0.3 2.2 ± 0.1 HLA1 0.2 ± 0.2 $1.2 \pm 0.1(6)$ $0.5 \pm 0.5(6)$ 1.9 ± 0.2 2.0 ± 0.3 (g0°C/10 s; n=6) $0.1 \pm 0.2(6)$ $0.1 \pm 0.3(5)$ 2.0 ± 0.3 HLA3 5.9 ± 0.5 $0.7 \pm 0.5(6)$ $0.1 \pm 0.1(5)$ 1.9 ± 0.2 (g0°C/30 s; n=6) $0.1 \pm 0.5(6)$ $0.1 \pm 0.1(5)$ 1.9 ± 0.2	inoculated* rawacidmean log CFU/g±SDmean log CFU/g±SDmonocytogenesactivitymeat for sausagebacteria(number of(number ofmean log(aw)production (bymean logenrichment-methodenrichment-methodCFU/g±SDmean4% hot lacticCFU/gpositive sausages outpositive sausages outpositive sausages outof 6 tested)** \pm SDacid; HLA) \pm SDof 6 tested)**of 6 tested)** 2.2 ± 0.1 $0.978\pm$ (untreated; n=6) $ 3.9\pm0.2$ 3.6 ± 0.4 2.2 ± 0.1 $0.979\pm$ (untreated; n=6) $ 1.2\pm0.1(6)$ $0.5\pm0.5(6)$ 1.9 ± 0.2 $0.979\pm$ (untreated; n=6) $ 0.1\pm0.1(6)$ $0.5\pm0.5(6)$ 1.9 ± 0.2 $0.979\pm$ (untreated; n=6) $ 0.1\pm0.2(6)$ $0.1\pm0.3(5)$ 2.0 ± 0.3 $0.979\pm$ (untreated; n=6) $ 0.1\pm0.2(6)$ $0.1\pm0.3(5)$ 2.0 ± 0.3 $0.979\pm$ (BC°/J0 s; n=6) $0.1\pm0.2(6)$ $0.1\pm0.3(5)$ $0.1\pm0.3(5)$ $0.978\pm$ (HLA3) 5.9 ± 0.5 $0.7\pm0.5(6)$ $0.1\pm0.1(5)$ 1.9 ± 0.2 $0.978\pm$ (R0°/J3 s; n=6) 0.9 ± 0.5 $0.7\pm0.5(6)$ $0.1\pm0.1(5)$ 0.9 ± 0.2 $0.978\pm$ </td

fermentation)	(untreated; n=6)					0.001	0.02
	HLA1	95101	0.4±0.6(6)	0.0(0)	2.0±0.2	$0.972\pm$	4.99±
	(90°C/10 s; n=6)	8.5±0.1		0.0(0)	2.0±0.2	0.001	0.04
	HLA2	8.5±0.1	0.1 + 0.1(2)	0.0(4)	2.0±0.3	0.971±	4.81±
	(85°C/20 s; n=6)	8.3±0.1	0.1±0.1(3)	0.0(4)		0.001	0.02
	HLA3	8.5±0.1	0.2±0.4(4)	0.0(1)	1.8±0.4	$0.972\pm$	4.80±
	(80°C/30 s; n=6)	8.J±0.1				0.001	0.01
20 (end of	Control	8.5±0.1	2.0±0.5	1.7±0.2	2.2±0.1	0.815±	5.35±
process -	(untreated; n=6)	8.J±0.1		1.7±0.2		0.008	0.02
finished	HLA1	8.8±0.1	0.0(2)	0.0(0)	1.9±0.3	0.790±	5.29±
sausages)	(90°C/10 s; n=6)		0.0(2)	0.0(0)		0.018	0.02
	HLA2	8.7±0.1	0.1±0.1(1)	0.0(0)	1.9±0.3	0.816±	5.17±
	(85°C/20 s; n=6)	8.7±0.1	0.1±0.1(1)	0.0(0)	1.9±0.3	0.018	0.03
	HLA3	8 5+0 1	0.0(0)	0.0(0)	1 7+0 3	0.798±	5.14±
	(80°C/30 s; n=6)	8.5±0.1	0.0(0)	0.0(0)	1.7±0.3	0.024	0.03

444 * Inoculated with a mixture of *E. coli* O157, *S.* Typhimurium and *L. monocytogenes* strains; ** Enrichment broths tested by the

445 GLISA rapid method

446 Table 2. The effects of decontamination treatments of incoming beef on biogenic amine

447 contents in fermented sausages during the production process

Day of the	Treatments of	Putrescine	Cadaverine	Histamine	Tyramine
production	inoculated* raw meat	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
process	for sausage production				
(stage)	(with 4% hot lactic;				
	HLA)		Ċ		
3 (end of	Control (untreated; n=3)	50.9±45.0	33.0±7.3	ND	24.8±21.8
fermentation)	HLA1 (90°C/10 s; n=3)	ND	4.0±3.6	ND	ND
	HLA2 (85°C/20 s; n=3)	ND	1.9±1.5	ND	ND
	HLA3 (80°C/30 s; n=3)	1.7±3.0	3.2±1.7	ND	ND
20 (end of	Control (untreated; n=3)	ND	ND	ND	ND
process -	HLA1 (90°C/10 s; n=3)	ND	ND	ND	ND
finished	HLA2 (85°C/20 s; n=3)	ND	ND	ND	ND
sausages)	HLA3 (80°C/30 s; n=3)	ND	ND	ND	ND

- 448 ND not detected; * Inoculated with a mixture of *E. coli* O157, *S.* Typhimurium and *L.*
- 449 *monocytogenes* strains

Treatments of raw	Sausage sensory qualities scores* (mean value±SD)							
meat for sausage	External	Cross-cut	Colour	Texture	Juiciness	Odour	Flavour	Overall
production (by 4% appearan		surface				S		acceptability
hot lactic acid; HLA)		appearance			Č			
Control (untreated)	6.0±0.0	6.9±0.2	7.0±0.0	6.6±0.2	4.4±0.3	6.1±0.6	6.2±0.3	6.2±0.3
HLA1 (90°C/10 s)	5.0±0.0	6.3±0.3	6.9±0.2	6.2±0.3	3.2±0.5	6.2±0.6	4.3±0.8	4.6±0.8
HLA2 (85°C/20 s)	3.9±0.3	4.6±0.5	3.0±0.0	6.0±0.3	2.6±0.3	5.6±0.9	5.2±1.0	4.4±0.9
HLA3 (80°C/30 s)	3.2±0.4	3.9±0.6	2.0±0.0	6.0±0.3	2.2±0.3	4.7±0.7	3.0±1.3	2.5±0.3

450 Table 3. The effects of decontamination treatments of incoming beef on sensory qualities of finished fermented sausages

451 * Using 1-7 scale; assessed by an eight-member trained sensory panel

mber trained sensory r.

Highlights

- Beef trimmings for fermented sausages were treated with hot, 4% lactic acid.
- E. coli O157 and Salmonella were markedly reduced in finished sausages.
- L. monocytogenes reduction in finished sausages was not significant.
- Biogenic amines were not detectable in finished sausages.
- Sensorial acceptability of finished sausages was somewhat diminished.

CER MAN