118 research outputs found

    Ponazuril Inhibits the Development of Eimeria Vermiformis in Experimentally Infected Outbred Swiss Mice

    Get PDF
    We evaluated a 15% paste formulation of ponazuril in outbred Swiss mice that were experimentally infected with Eimeria vermiformis. Thirty, 8-week-old female mice (approximately 20 g) were placed in one group of 10 mice and one group of 20 mice. Mice in both groups were gavaged with approximately 5,000 sporulated oocysts of E. vermiformis on day 0. Mice in group 2 (n=10) were treated orally on days 3 and 4 with ponazuril (suspended in 30% propylene glycol) at the rate of 20 mg/kg. Mice in group 1 (n=20) were gavaged with a similar volume of 30% propylene glycol. Rates of oocyst passage (oocysts/g feces) were determined on day 10 (peak patency) for treated and nontreated mice using a fecal aliquot oocyst counting technique. Oocysts were not observed in the feces of treated mice using the aliquot technique. Control mice passaged oocysts at a geometric mean rate of \u3e104,000 oocysts/g feces. Control mice also produced significantly less feces on day 10. These results indicate that ponazuril is effective against E. vermiformis under the conditions utilized in this study, and that the E. vermiformis mouse model could be useful in predicting the efficacy of new anticoccidial drugs. © Springer-Verlag 2004

    Activity of pentamidine and pentamidine analogs against Toxoplasma gondii in cell cultures.

    Get PDF
    The capabilities of pentamidine and nine pentamidine analogs to inhibit the development of Toxoplasma gondii were examined in vitro. Treatment of infected cultures with pentamidine and five of its analogs caused a significant (P less than 0.05) reduction in the numbers of tachyzoites produced. Analogs of pentamidine may be useful agents in the treatment of toxoplasmosis

    Susceptibility of cat fleas (siphonaptera: Puclicidae) to fipronil and imidacloprid using adult and larval bioassays

    Get PDF
    © 2014 Entomological Society of America This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected] monitoring of the susceptibility offleas to insecticides has typically been conducted by exposing adults on treated surfaces. Other methods such as topical applications of insecticides to adults and larval bioassays on treated rearing media have been developed. Unfortunately, baseline responses of susceptible strains of cat flea, Ctenocephalides felis (Bouchè), except for imidacloprid, have not been determined for all on-animal therapies and new classes of chemistry now being used. However, the relationship between adult and larval bioassays of fleas has not been previously investigated. The adult and larval bioassays of fipronil and imidacloprid were compared for both field-collected isolates and laboratory strains. Adult topical bioassays of fipronil and imidacloprid to laboratory strains and field-collected isolates demonstrated that LD50s of fipronil and imidacloprid ranged from 0.11 to 0.40 nanograms per flea and 0.02 to 0.18 nanograms per flea, respectively. Resistance ratios for fipronil and imidacloprid ranged from 0.11 to 2.21. Based on the larval bioassay published for imidacloprid, a larval bioassay was established for fipronil and reported in this article. The ranges of the LC50s of fipronil and imidacloprid in the larval rearing media were 0.07-0.16 and 0.11-0.21 ppm, respectively. Resistance ratios for adult and larval bioassays ranged from 0.11 to 2.2 and 0.58 to 1.75, respectively. Both adult and larval bioassays provided similar patterns for fipronil and imidacloprid. Although the adult bioassays permitted a more precise dosage applied, the larval bioassays allowed for testing isolates without the need to maintain on synthetic or natural hosts.Peer reviewedFinal Published versio

    A Wasp Manipulates Neuronal Activity in the Sub-Esophageal Ganglion to Decrease the Drive for Walking in Its Cockroach Prey

    Get PDF
    BACKGROUND: The parasitoid Jewel Wasp hunts cockroaches to serve as a live food supply for its offspring. The wasp stings the cockroach in the head and delivers a cocktail of neurotoxins directly inside the prey's cerebral ganglia. Although not paralyzed, the stung cockroach becomes a living yet docile 'zombie', incapable of self-initiating spontaneous or evoked walking. We show here that such neuro-chemical manipulation can be attributed to decreased neuronal activity in a small region of the cockroach cerebral nervous system, the sub-esophageal ganglion (SEG). A decrease in descending permissive inputs from this ganglion to thoracic central pattern generators decreases the propensity for walking-related behaviors. METHODOLOGY AND PRINCIPAL FINDINGS: We have used behavioral, neuro-pharmacological and electrophysiological methods to show that: (1) Surgically removing the cockroach SEG prior to wasp stinging prolongs the duration of the sting 5-fold, suggesting that the wasp actively targets the SEG during the stinging sequence; (2) injecting a sodium channel blocker, procaine, into the SEG of non-stung cockroaches reversibly decreases spontaneous and evoked walking, suggesting that the SEG plays an important role in the up-regulation of locomotion; (3) artificial focal injection of crude milked venom into the SEG of non-stung cockroaches decreases spontaneous and evoked walking, as seen with naturally-stung cockroaches; and (4) spontaneous and evoked neuronal spiking activity in the SEG, recorded with an extracellular bipolar microelectrode, is markedly decreased in stung cockroaches versus non-stung controls. CONCLUSIONS AND SIGNIFICANCE: We have identified the neuronal substrate responsible for the venom-induced manipulation of the cockroach's drive for walking. Our data strongly support previous findings suggesting a critical and permissive role for the SEG in the regulation of locomotion in insects. By injecting a venom cocktail directly into the SEG, the parasitoid Jewel Wasp selectively manipulates the cockroach's motivation to initiate walking without interfering with other non-related behaviors
    corecore