31 research outputs found

    Sensitivity of Colorectal Cancer to Arginine Deprivation Therapy is Shaped by Differential Expression of Urea Cycle Enzymes

    Get PDF
    We thank Polaris Pharmaceuticals and Bio-Cancer Treatment for providing drugs and reagents. This work was supported by the Cancer Prevention Research Trust, with assistance from the Wellcome Trust Institutional Strategic Support Fund [097828/z/11/B], and Cancer Research UK in conjunction with the Department of Health as part of an Experimental Cancer Medicine Centre grant [C325/A15575]. C.A. was funded by a PhD fellowship from the Cancer Prevention Research Trust, S.S.A. was funded by a studentship from the Iraqi Government. We are thankful to John Bomalaski and Sara Galavotti for their critical reading of the manuscript and insightful suggestions. Finally, we are profoundly indebted to Professor Andreas Gescher for his constant support during the execution of this project and the writing of this manuscript.Peer reviewedPublisher PD

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    High Throughput Selection of Effective Serodiagnostics for Trypanosoma cruzi infection

    Get PDF
    The diagnosis of Trypanosoma cruzi infection (the cause of human Chagas disease) is difficult because the symptoms of the infection are often absent or non-specific, and because the parasites themselves are usually below the level of detection in the infected subjects. Therefore, diagnosis generally depends on the measurement of T. cruzi–specific antibodies produced in response to the infection. However, current methods to detect anti–T. cruzi antibodies are relatively poor. In this study, we have conducted a broad screen of >400 T. cruzi proteins to identify those proteins which are best able to detect anti–T. cruzi antibodies. Using a set of proteins selected by this screen, we were able to detect 100% of >100 confirmed positive human cases of T. cruzi infection, as well as suspect cases that were negative using existing tests. This protein panel was also able to detect apparent changes in infection status following drug treatment of individuals with chronic T. cruzi infection. The results of this study should allow for significant improvements in the detection of T. cruzi infection and better screening methods to avoid blood transfusion–related transmission of the infection, and offer a crucial tool for determining the success or failure of drug treatment and other intervention strategies to limit the impact of Chagas disease

    Discovery and Fine-Mapping of Glycaemic and Obesity-Related Trait Loci Using High-Density Imputation

    Get PDF
    Reference panels from the 1000 Genomes (1000G) Project Consortium provide near complete coverage of common and low-frequency genetic variation with minor allele frequency ≥0.5% across European ancestry populations. Within the European Network for Genetic and Genomic Epidemiology (ENGAGE) Consortium, we have undertaken the fi

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    The Time-domain Spectroscopic Survey: Target Selection for Repeat Spectroscopy

    Full text link

    Synthesis of 3‑(Hetero)aryl Tetrahydropyrazolo[3,4‑<i>c</i>]pyridines by Suzuki–Miyaura Cross-Coupling Methodology

    No full text
    A new synthetic route to 3-(heteroaryl) tetrahydropyrazolo­[3,4-<i>c</i>]­pyridines has been developed that uses the Suzuki–Miyaura cross-coupling of a triflate <b>6</b> with (hetero)­aryl boronic acids or esters. Using Pd­(OAc)<sub>2</sub> and XPhos or an XPhos precatalyst, a diverse range of substituents at the C3 position of the tetrahydropyrazolo­[3,4-<i>c</i>]­pyridine skeleton were prepared. The use of pivaloyloxymethyl and benzyl protection also offers the potential to differentially functionalize the pyrazole and tetrahydropyridine nitrogens

    A random six-phase switch regulates pneumococcal virulence via global epigenetic changes.

    No full text
    Streptococcus pneumoniae (the pneumococcus) is the world's foremost bacterial pathogen in both morbidity and mortality. Switching between phenotypic forms (or 'phases') that favour asymptomatic carriage or invasive disease was first reported in 1933. Here, we show that the underlying mechanism for such phase variation consists of genetic rearrangements in a Type I restriction-modification system (SpnD39III). The rearrangements generate six alternative specificities with distinct methylation patterns, as defined by single-molecule, real-time (SMRT) methylomics. The SpnD39III variants have distinct gene expression profiles. We demonstrate distinct virulence in experimental infection and in vivo selection for switching between SpnD39III variants. SpnD39III is ubiquitous in pneumococci, indicating an essential role in its biology. Future studies must recognize the potential for switching between these heretofore undetectable, differentiated pneumococcal subpopulations in vitro and in vivo. Similar systems exist in other bacterial genera, indicating the potential for broad exploitation of epigenetic gene regulation
    corecore