1,238 research outputs found

    Exfiltration from sewers - is it a serious problem?

    Get PDF
    This paper contends that estimates of exfiltration leakage from sewers, and the problems arising from it may be too high due to an underestimation of the “self-repairing” action of sewage and sewage sediments in raw sewage. Two aspects of a continuing programme of research are reported;(i) the measurement of exfiltration rates from a range of defects in a sewer pipe with pipe bedding effects simulated by a dry gravel trench surround to the pipe, and (ii) an assessment of the persistence of pathogens in the gravel and soil beneath the test rig pipe, using coliforms as a biological indicator. The results show that the introduction of a gravel surround resulted in more rapid and effective sealing across the entire range of defects tested compared to previously performed experiments with the defects discharging to air. Complete sealing eventually occurred on every run for a 10 mm x 10 mm defect situated at the invert of the sewer and the lowest recorded levels in each experiment for a 10 mm wide radial defect were of the order 10-3 to 10-4 ls-1. These results have been scaled-up to estimate leakage rates in lengths of sewers and sub-catchments and levels significantly lower than previously estimated are indicated. Additionally, the pilot experiment to investigate the fate of biological contaminants in the exfiltrate suggests rapid reduction in microorganisms levels beneath the sewer pipe

    Spin flip from dark to bright states in InP quantum dots

    Full text link
    We report measurements of the time for spin flip from dark (non-light emitting) exciton states in quantum dots to bright (light emitting) exciton states in InP quantum dots. Dark excitons are created by two-photon excitation by an ultrafast laser. The time for spin flip between dark and bright states is found to be approximately 200 ps, independent of density and temperature below 70 K. This is much shorter than observed in other quantum dot systems. The rate of decay of the luminescence intensity, approximately 300 ps, is not simply equal to the radiative decay rate from the bright states, because the rate of decay is limited by the rate of conversion from dark excitons into bright excitons. The dependence of the luminescence decay time on the spin flip time is a general effect that applies to many experiments.Comment: 3 figure

    Regulation of microvascular flow and metabolism: An overview

    Get PDF
    Skeletal muscle is an important site for insulin to regulate blood glucose levels. It is estimated that skeletal muscle is responsible for ~80% of insulin-mediated glucose disposal in the post-prandial period. The classical action of insulin to increase muscle glucose uptake involves insulin binding to insulin receptors on myocytes to stimulate glucose transporter 4 (GLUT 4) translocation to the cell surface membrane, enhancing glucose uptake. However, an additional role of insulin that is often under-appreciated is its action to increase muscle perfusion thereby improving insulin and glucose delivery to myocytes. Either of these responses (myocyte and/or vascular) may be impaired in insulin resistance, and both impairments are apparent in type 2 diabetes, resulting in diminished glucose disposal by muscle. The aim of this review is to report on the growing body of literature suggesting that insulin-mediated control of skeletal muscle perfusion is an important regulator of muscle glucose uptake and that impairment of microvascular insulin action has important physiological consequences early in the pathogenesis of insulin resistance. This work was discussed at the 2015 Australian Physiological Society Symposium “Physiological mechanisms controlling microvascular flow and muscle metabolism”

    Genome-wide linkage analysis of 972 bipolar pedigrees using single-nucleotide polymorphisms.

    Get PDF
    Because of the high costs associated with ascertainment of families, most linkage studies of Bipolar I disorder (BPI) have used relatively small samples. Moreover, the genetic information content reported in most studies has been less than 0.6. Although microsatellite markers spaced every 10 cM typically extract most of the genetic information content for larger multiplex families, they can be less informative for smaller pedigrees especially for affected sib pair kindreds. For these reasons we collaborated to pool family resources and carried out higher density genotyping. Approximately 1100 pedigrees of European ancestry were initially selected for study and were genotyped by the Center for Inherited Disease Research using the Illumina Linkage Panel 12 set of 6090 single-nucleotide polymorphisms. Of the ~1100 families, 972 were informative for further analyses, and mean information content was 0.86 after pruning for linkage disequilibrium. The 972 kindreds include 2284 cases of BPI disorder, 498 individuals with bipolar II disorder (BPII) and 702 subjects with recurrent major depression. Three affection status models (ASMs) were considered: ASM1 (BPI and schizoaffective disorder, BP cases (SABP) only), ASM2 (ASM1 cases plus BPII) and ASM3 (ASM2 cases plus recurrent major depression). Both parametric and non-parametric linkage methods were carried out. The strongest findings occurred at 6q21 (non-parametric pairs LOD 3.4 for rs1046943 at 119 cM) and 9q21 (non-parametric pairs logarithm of odds (LOD) 3.4 for rs722642 at 78 cM) using only BPI and schizoaffective (SA), BP cases. Both results met genome-wide significant criteria, although neither was significant after correction for multiple analyses. We also inspected parametric scores for the larger multiplex families to identify possible rare susceptibility loci. In this analysis, we observed 59 parametric LODs of 2 or greater, many of which are likely to be close to maximum possible scores. Although some linkage findings may be false positives, the results could help prioritize the search for rare variants using whole exome or genome sequencing

    Promoting students’ interest through culturally sensitive curricula in higher education

    Get PDF
    Previous studies have emphasized culturally sensitive curricula in the context of enhancing minoritized students’ education. We examined the relationship between second-year higher education students’ perceptions of the cultural sensitivity of their curriculum and both majoritized and minoritized students’ interest in their course. A total of 286 (228 F) students rated the cultural sensitivity of their curriculum on six scales using a revised version of the Culturally Sensitive Curricula Scales (CSCS-R), the perceived quality of their relationships with teachers, and their interest. The CSCS-R widened the construct with two new scales and showed better reliability. Ethnic minority students (n = 99) perceived their curriculum as less culturally sensitive than White students (n = 182), corroborating previous findings. Black students perceived their curriculum as less culturally sensitive than Asian students. There were no significant differences between ethnic minority and White students on interest or perceived quality of relationships with teachers. Five dimensions of cultural sensitivity (Diversity Represented, Positive Depictions, Challenge Power, Inclusive Classroom Interactions, Culturally Sensitive Assessments) and perceived quality of relationships with teachers predicted interest. Ethnicity did not. Ensuring curricula and assessments represent diversity positively, challenge power and are inclusive may support students’ interest while reflecting an increasingly diverse society

    Entangled Photons from Small Quantum Dots

    Get PDF
    We discuss level schemes of small quantum-dot turnstiles and their applicability in the production of entanglement in two-photon emission. Due to the large energy splitting of the single-electron levels, only one single electron level and one single hole level can be made resonant with the levels in the conduction band and valence band. This results in a model with nine distinct levels, which are split by the Coulomb interactions. We show that the optical selection rules are different for flat and tall cylindrically symmetric dots, and how this affects the quality of the entanglement generated in the decay of the biexciton state. The effect of charge carrier tunneling and of a resonant cavity is included in the model.Comment: 10 pages, 8 figure

    Assessing sensitivity and reproducibility of RT-ddPCR and RT-qPCR for the quantification of SARS-CoV-2 in wastewater

    Get PDF
    Throughout the COVID-19 global pandemic there has been significant interest and investment in using Wastewater-Based Epidemiology (WBE) for surveillance of viral pathogen presence and infections at the community level. There has been a push for widescale implementation of standardized protocols to quantify viral loads in a range of wastewater systems. To address concerns regarding sensitivity, limits of quantification, and large-scale reproducibility, a comparison of two similar workflows using RT-qPCR and RT-ddPCR was conducted. Sixty raw wastewater influent samples were acquired from nine distinct wastewater treatment plants (WWTP's) served by the Hampton Roads Sanitation District (HRSD, Virginia Beach, Virginia) over a 6-month period beginning March 9th, 2020. Common reagents, controls, master mixes and nucleic acid extracts were shared between two individual processing groups based out of HRSD and the UNC Chapel Hill Institute of Marine Sciences (IMS, Morehead City, North Carolina). Samples were analyzed in parallel using One-Step RT-qPCR and One-Step RT-ddPCR with Nucleocapsid Protein 2 (N2) specific primers and probe. Influent SARS-CoV-2 N2 concentrations steadily increased over time spanning a range from non-detectable to 2.13E + 05 copies/L. Systematic dilution of the extracts indicated that inhibitory components in the wastewater matrices did not significantly impede the detection of a positive N2 signal for either workflow. The RT-ddPCR workflow had a greater analytical sensitivity with a lower Limit of Detection (LOD) at 0.066 copies/Όl of template compared to RT-qPCR with a calculated LOD of 12.0 copies/ΌL of template. Interlaboratory comparisons using non-parametric correlation analysis demonstrated that there was a strong, significant, positive correlation between split extracts when employing RT-ddPCR for analysis with a ρ value of 0.86

    Scratching the scale labyrinth

    Get PDF
    In this paper, we introduce a new approach to computer-aided microtonal improvisation by combining methods for (1) interactive scale navigation, (2) real-time manipulation of musical patterns and (3) dynamical timbre adaption in solidarity with the respective scales. On the basis of the theory of well-formed scales we offer a visualization of the underlying combinatorial ramifications in terms of a scale labyrinth. This involves the selection of generic well-formed scales on a binary tree (based on the Stern-Brocot tree) as well as the choice of specific tunings through the specification of the sizes of a period (pseudo-octave) and a generator (pseudo-fifth), whose limits are constrained by the actual position on the tree. We also introduce a method to enable transformations among the modes of a chosen scale (generalized and refined “diatonic” and “chromatic” transpositions). To actually explore the scales and modes through the shaping and transformation of rhythmically and melodically interesting tone patterns, we propose a playing technique called Fourier Scratching. It is based on the manipulation of the “spectra” (DFT) of playing gestures on a sphere. The coordinates of these gestures affect score and performance parameters such as scale degree, loudness, and timbre. Finally, we discuss a technique to dynamically match the timbre to the selected scale tuning

    Environmental risk assessment of genetically modified plants - concepts and controversies

    Get PDF
    Background and purpose: In Europe, the EU Directive 2001/18/EC lays out the main provisions of environmental risk assessment (ERA) of genetically modified (GM) organisms that are interpreted very differently by different stakeholders. The purpose of this paper is to: (a) describe the current implementation of ERA of GM plants in the EU and its scientific shortcomings, (b) present an improved ERA concept through the integration of a previously developed selection procedure for identification of non-target testing organisms into the ERA framework as laid out in the EU Directive 2001/18/EC and its supplement material (Commission Decision 2002/623/EC), (c) describe the activities to be carried out in each component of the ERA and (d) propose a hierarchical testing scheme. Lastly, we illustrate the outcomes for three different crop case examples. Main features: Implementation of the current ERA concept of GM crops in the EU is based on an interpretation of the EU regulations that focuses almost exclusively on the isolated bacteria-produced novel proteins with little consideration of the whole plant. Therefore, testing procedures for the effect assessment of GM plants on non-target organisms largely follow the ecotoxicological testing strategy developed for pesticides. This presumes that any potential adverse effect of the whole GM plant and the plant-produced novel compound can be extrapolated from testing of the isolated bacteriaproduced novel compound or can be detected in agronomic field trials. This has led to persisting scientific criticism. Results: Based on the EU ERA framework, we present an improved ERA concept that is system oriented with the GM plant at the centre and integrates a procedure for selection of testing organisms that do occur in the receiving environment. We also propose a hierarchical testing scheme from laboratory studies to field trials and we illustrate the outcomes for three different crop case examples. Conclusions and recommendations: Our proposed concept can alleviate a number of deficits identified in the current approach to ERA of GM plants. It allows the ERA to be tailored to the GM plant case and the receiving environment
    • 

    corecore