54 research outputs found

    Ground states in low-dimensional quantum magnets

    Get PDF
    The ability to control the magnetic properties of low-dimensional magnetic systems is a major aim of research in condensed matter physics. Bespoke magnetic systems have potential uses in many practical applications and experimental investigations of theoretical predictions. To achieve this goal necessitates being able to determine the magnetic properties of these systems, which can require much expense in time, money and effort. In this thesis I present a methodology that can be used for characterising the properties of powdered, low-dimensional spin-1 antiferromagnets using commercially available measurement systems. The techniques involved are able to determine the magnetic properties of powdered systems containing isolated and exchange-coupled Ni2+ ions accurately enough such that a decision on growing single-crystals or measurements requiring more complicated measurements at specialist facilities can be made. Using this method, I then characterise the magnetic properties of a family of similar Ni2+-halide-halide-Ni2+ chains which show differing magnetic behaviour linked to the different bridging ligands. It is found that single-ion anisotropy in Ni2+ octahedral environments is not just dependent on the placement but also the electronic properties of the coordinated non-magnetic ligands. Also, magnetic interactions along the Ni2+ chains are strongly influenced by the size of the bridging halide ions. The distance between adjacent ions is less important. This property was exploited to explore bond disorder in the spin-1/2 quasi two-dimensional antiferromagnet (QuinH)2Cu(ClxBr

    Mode mixing and losses in misaligned microcavities

    Full text link
    We present a study on the optical losses of Fabry-P\'erot cavities subject to realistic transverse mirror misalignment. We consider mirrors of the two most prevalent surface forms: idealised spherical depressions, and Gaussian profiles generated by laser ablation. We first describe the mode mixing phenomena seen in the spherical mirror case and compare to the frequently-used clipping model, observing close agreement in the predicted diffraction loss, but with the addition of protective mode mixing at transverse degeneracies. We then discuss the Gaussian mirror case, detailing how the varying surface curvature across the mirror leads to complex variations in round trip loss and mode profile. In light of the severe mode distortion and strongly elevated loss predicted for many cavity lengths and transverse alignments when using Gaussian mirrors, we suggest that the consequences of mirror surface profile are carefully considered when designing cavity experiments.Comment: 16 pages, 12 figure

    Efficient operator method for modelling mode mixing in misaligned optical cavities

    Full text link
    The transverse field structure and diffraction loss of the resonant modes of Fabry-P\'erot optical cavities are acutely sensitive to the alignment and shape of the mirror substrates. We develop extensions to the `mode mixing' method applicable to arbitrary mirror shapes, which both facilitate fast calculation of the modes of cavities with transversely misaligned mirrors and enable the determination and transformation of the geometric properties of these modes. We show how these methods extend previous capabilities by including the practically-motivated case of transverse mirror misalignment, unveiling rich and complex structure of the resonant modes.Comment: 17 pages, 7 figure

    Optimisation of Scalable Ion-Cavity Interfaces for Quantum Photonic Networks

    Full text link
    In the design optimisation of ion-cavity interfaces for quantum networking applications, difficulties occur due to the many competing figures of merit and highly interdependent design constraints, many of which present `soft-limits', amenable to improvement at the cost of engineering time. In this work we present a systematic approach to this problem which offers a means to identify efficient and robust operating regimes, and to elucidate the trade-offs involved in the design process, allowing engineering efforts to be focused on the most sensitive and critical parameters. We show that in many relevant cases it is possible to approximately separate the geometric aspects of the cooperativity from those associated with the atomic system and the mirror surfaces themselves, greatly simplifying the optimisation procedure. Although our approach to optimisation can be applied to most operating regimes, here we consider cavities suitable for typical ion trapping experiments, and with substantial transverse misalignment of the mirrors. We find that cavities with mirror misalignments of many micrometres can still offer very high photon extraction efficiencies, offering an appealing route to the scalable production of ion-cavity interfaces for large scale quantum networks

    Experimental and theoretical electron density analysis of copper pyrazine nitrate quasi-low-dimensional quantum magnets

    Get PDF
    The accurate electron density distribution and magnetic properties of two metal-organic polymeric magnets, the quasi-one-dimensional (1D) Cu(pyz)(NO3)2 and the quasi-two-dimensional (2D) [Cu(pyz)2(NO3)]NO3·H2O, have been investigated by high-resolution single-crystal X-ray diffraction and Density Functional Theory calculations on the whole periodic systems and on selected fragments. Topological analyses, based on Quantum Theory of Atoms in Molecules, enabled the characterization of possible magnetic exchange pathways and the establishment of relationships between the electron (charge and spin) densities and the exchange-coupling constants. In both compounds, the experimentally observed anti-ferromagnetic coupling can be quantitatively explained by the Cu-Cu super-exchange pathway mediated by the pyrazine bridging ligands, via a σ-type interaction. From topological analyses of experimental charge-density data, we show for the first time that the pyrazine tilt angle does not play a role in determining the strength of the magnetic interaction. Taken in combination with molecular orbital analysis and spin density calculations, we find a synergistic relationship between spin delocalization and spin polarization mechanisms and that both determine the bulk magnetic behavior of these Cu(II)-pyz coordination polymers

    Aqueductal developmental venous anomaly as an unusual cause of congenital hydrocephalus: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Aqueductal stenosis may be caused by a number of etiologies including congenital stenosis, tumor, inflammation, and, very rarely, vascular malformation. However, aqueductal stenosis caused by a developmental venous anomaly presenting as congenital hydrocephalus is even more rare, and, to the best of our knowledge, has not yet been reported in the literature. In this study, we review the literature and report the first case of congenital hydrocephalus associated with aqueductal stenosis from a developmental venous anomaly.</p> <p>Case presentation</p> <p>The patient is a three-day-old, African-American baby girl with a prenatal diagnosis of hydrocephalus. She presented with a full fontanelle, splayed sutures, and macrocephaly. Postnatal magnetic resonance imaging showed triventricular hydrocephalus, suggesting aqueductal stenosis. Examination of the T1-weighted sagittal magnetic resonance imaging enhanced with gadolinium revealed a developmental venous anomaly passing through the orifice of the aqueduct. We treated the patient with a ventriculoperitoneal shunt.</p> <p>Conclusions</p> <p>Ten cases of aqueductal stenosis due to venous lesions have been reported and, although these venous angiomas and developmental venous anomalies are usually considered congenital lesions, all 10 cases became symptomatic as older children and adults. Our case is the first in which aqueductal stenosis caused by a developmental venous anomaly presents as congenital hydrocephalus. We hope adding to the literature will improve understanding of this very uncommon cause of hydrocephalus and, therefore, will aid in treatment.</p

    Enhancing easy-plane anisotropy in bespoke Ni(II) quantum magnets

    Get PDF
    We examine the crystal structures and magnetic properties of several S = 1 Ni(II) coordination compounds, molecules and polymers, that include the bridging ligands HF2-, AF62- (A = Ti, Zr) and pyrazine or non-bridging ligands F-, SiF62-, glycine, H2O, 1-vinylimidazole, 4-methylpyrazole and 3-hydroxypyridine. Pseudo-octahedral NiN4F2, NiN4O2 or NiN4OF cores consist of equatorial Ni-N bonds that are equal to or slightly longer than the axial Ni-Lax bonds. By design, the zero-field splitting (D) is large in these systems and, in the presence of substantial exchange interactions (J), can be difficult to discriminate from magnetometry measurements on powder samples. Thus, we relied on pulsed-field magnetization in those cases and employed electron-spin resonance (ESR) to confirm D when J 0) and range from ≈ 8-25 K. This work reveals a linear correlation between the ratio d(Ni-Lax)/d(Ni-Neq) and D although the ligand spectrochemical properties may also be important. We assert that this relationship allows us to predict the type of magnetocrystalline anisotropy in tailored Ni(II) quantum magnets

    Tick-, mosquito-, and rodent-borne parasite sampling designs for the National Ecological Observatory Network

    Get PDF
    Parasites and pathogens are increasingly recognized as significant drivers of ecological and evolutionary change in natural ecosystems. Concurrently, transmission of infectious agents among human, livestock, and wildlife populations represents a growing threat to veterinary and human health. In light of these trends and the scarcity of long-term time series data on infection rates among vectors and reservoirs, the National Ecological Observatory Network (NEON) will collect measurements and samples of a suite of tick-, mosquito-, and rodent-borne parasites through a continental-scale surveillance program. Here, we describe the sampling designs for these efforts, highlighting sampling priorities, field and analytical methods, and the data as well as archived samples to be made available to the research community. Insights generated by this sampling will advance current understanding of and ability to predict changes in infection and disease dynamics in novel, interdisciplinary, and collaborative ways. (Résumé d'auteur

    Tick-, Mosquito-, and Rodent-Borne Parasite Sampling Designs for the National Ecological Observatory Network [Special Feature: NEON Design]

    Get PDF
    Parasites and pathogens are increasingly recognized as significant drivers of ecological and evolutionary change in natural ecosystems. Concurrently, transmission of infectious agents among human, livestock, and wildlife populations represents a growing threat to veterinary and human health. In light of these trends and the scarcity of long-term time series data on infection rates among vectors and reservoirs, the National Ecological Observatory Network (NEON) will collect measurements and samples of a suite of tick-, mosquito-, and rodent-borne parasites through a continental-scale surveillance program. Here, we describe the sampling designs for these efforts, highlighting sampling priorities, field and analytical methods, and the data as well as archived samples to be made available to the research community. Insights generated by this sampling will advance current understanding of and ability to predict changes in infection and disease dynamics in novel, interdisciplinary, and collaborative ways
    • …
    corecore