
warwick.ac.uk/lib-publications  
 

 

 

 

 

 

A Thesis Submitted for the Degree of PhD at the University of Warwick 

 

Permanent WRAP URL: 

http://wrap.warwick.ac.uk/128299 

 

 

Copyright and reuse:                     

This thesis is made available online and is protected by original copyright.  

Please scroll down to view the document itself.  

Please refer to the repository record for this item for information to help you to cite it. 

Our policy information is available from the repository home page.  

 

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/125872
mailto:wrap@warwick.ac.uk


Ground states in low-dimensional quantum magnets

by

William James Anthony Blackmore

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy

Department of Physics

September 2018



Contents

List of Tables iv

List of Figures vi

Acknowledgments xviii

Declarations xix

Abstract xxii

Chapter 1 Introduction 1

1.1 Basics of magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Non-interacting moments in a magnetic field . . . . . . . . . . . . . 4

1.2.1 Diamagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Paramagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Single-ion effects . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Interacting moments in a magnetic field . . . . . . . . . . . . . . . . 9

1.3.1 Ferromagnetism . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Antiferromagnetism . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Low-dimensional magnetism . . . . . . . . . . . . . . . . . . . . . . . 14

1.4.1 Quasi-two dimensional magnetism . . . . . . . . . . . . . . . 14

1.4.2 Quasi-one dimensional magnetism . . . . . . . . . . . . . . . 15

1.4.3 Coordination polymers . . . . . . . . . . . . . . . . . . . . . . 18

1.5 Thesis motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Chapter 2 Experimental Techniques 21

2.1 Magnetometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 Quasi-static measurements . . . . . . . . . . . . . . . . . . . 21

2.1.2 Pulsed-field measurements . . . . . . . . . . . . . . . . . . . . 22

2.2 Heat capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

i



2.3 Analysing magnetisation and heat capacity data of powdered samples 25

2.4 Electron spin resonance . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Muon-spin spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Scattering techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Chapter 3 Determining the magnetic properties of powdered Ni2+

complexes 38

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Isolated Ni2+ systems . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 [Ni(3,5-lut)4(H2O)2](BF4)2 . . . . . . . . . . . . . . . . . . . 45

3.3.2 Ni(SiF6)(H2O)(4-mepz)4 . . . . . . . . . . . . . . . . . . . . . 53

3.3.3 Ni(H2O)2(acetate)2(4-picoline)2 . . . . . . . . . . . . . . . . . 58

3.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Interacting Ni2+ ions . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.1 [Ni(pyz)2(H2O)2](BF4)2 . . . . . . . . . . . . . . . . . . . . . 63

3.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Chapter 4 Towards the control of the magnetic properties of Ni2+

chains. 74

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 NiF2(3,5-lut)4·H2O . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.1 Magnetisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4 Ni(HF2)2(3,5-lut)4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.1 ESR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5 NiCl2(3,5-lut)4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5.1 Magnetometry . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6 NiBr2(3,5-lut)4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.6.1 ESR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.6.2 Magnetometry . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.7 NiI2(3,5-lut)4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.7.2 ESR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.7.3 Magnetometry . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.7.4 Heat capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

ii



4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Chapter 5 Effect of magnetic exchange disorder in a quasi-two di-

mensional Cu2+ antiferromagnet 100

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2 Methods and preparatory measurements . . . . . . . . . . . . . . . . 104

5.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.1 Parent compounds . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.2 Disordered compounds . . . . . . . . . . . . . . . . . . . . . . 112

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Chapter 6 Conclusion 121

iii



List of Tables

3.1 Table showing which experimental techniques were used to study each

compound in this chapter. Red ticks correspond to measurements I

have made and analysed. Blue ticks represent measurements anal-

ysed by me but not performed by me. µ-SR data was collected and

analysed by Fan Xiao, Tom Lancaster, Robert Williams and Stephen

Blundell. I participated in the elastic neutron scattering (ENS) ex-

periment, but the analysis were performed Roger Johnson, University

of Oxford. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Structural parameters of [Ni(H2O)2(3,5-lut)4](BF4)2 and

[Ni(pyz)2(H2O)2](BF4)2. . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Structural information and bond lengths for Ni(SiF6)(H2O)(4-mepz)4

and Ni(H2O)2(acetate)2(4-picoline)2. See Fig. 3.2 and Fig. 3.3 for the

location of the ligands bonded to the Ni2+ ion. . . . . . . . . . . . . 44

3.4 Parameters obtained from the lattice and single-ion anisotropy fit to

zero-field heat capacity measurements of [Ni(3,5-lut)4(H2O)2](BF4)2

[Fig. 3.6(a)]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Parameters obtained from the lattice and single-ion anisotropy fit

to zero-field heat capacity measurements of Ni(H2O)2(acetate)2(4-

picoline)2 [Fig. 3.17(1)]. . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Magnetic parameters obtained from all measurements on

[Ni(3,5-lut)4(H2O)2](BF4)2, Ni(SiF6)(H2O)(4-mepz)4 and

Ni(H2O)2(acetate)2(4-picoline)2. The M(H) value represents

the
√
D2 − E2 value. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7 Clatt parameters for [Ni(pyz)2(H2O)2](BF4)2 obtained from modelling

high-temperature heat capacity data in Fig. 3.20(a). . . . . . . . . . 67

4.1 Experimentally obtained magnetic parameters and unit cell lengths

for the NiX2(pyz)2 family. This table is adapted from Table. 3 in [1] 74

iv



4.2 Table showing which experimental techniques were used to study

each compound in this chapter. Red ticks correspond to measure-

ments performed and analysed by myself. Blue ticks represent mea-

surements analysed but not performed by myself. Pulsed-field mea-

surements were performed by Jamie Manson, John Singleton and

Serena Birnbaum at the National High Magnetic Field Laboratory

(NHMFL), Los Alamos, USA. ESR measurements were performed

by Jamie Manson and Andrew Ozarowski at NHMFL, Tallahassee,

USA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Unit cell parameters for NiX2(3,5-lut)4. . . . . . . . . . . . . . . . . 78

4.4 Bond lengths in NiX2(3,5-lut)4. NN Ni-Ni corresponds to the near-

est neighbour Ni-Ni distance along the Ni-X-X-Ni chains. For

Ni(HF2)2(3,5-lut)4, the Ni-HF2 distance is between the nickel ion and

the adjacent fluorine ion. The HF2-HF2 distance is between adjacent

fluorines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 Lattice fit parameters for NiI2(3,5-lut)4 obtained from modelling

high-temperature zero-field heat capacity data. . . . . . . . . . . . . 95

4.6 Experimentally derived parameters for NiX2(3,5-lut)4. . . . . . . . . 97

5.1 Relevant structural parameters for (QuinH)2CuBr4·2H2O [2] and

(QuinH)2CuCl4·2H2O [3]. . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 List of concentrations of (QuinH)2Cu(ClxBr1−x)4·2H2O prepared,

and for which measurements were performed. For the pulsed-field

magnetisation and µ-SR techniques, the temperature of the data pre-

sented in section 5.3 is stated. The temperatures in red indicate

measurements that were performed at PSI and analysed by Fan Xiao. 106

5.3 Table showing parameters extracted from pulsed-field (J) and µ-SR

(TN) measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

v



List of Figures

1.1 (a) The ground state of an antiferromagnet is made up of two sublat-

tices with equal and opposite magnetisation. (b) The type of inter-

actions within a sample can be determined using high-temperature

inverse susceptibility and Eq. 1.29. For paramagnets the inverse sus-

ceptibility extrapolates to the origin. Ferromagnets have a positive

x-axis intercept whereas antiferromagnets have a negative one. . . . 11

1.2 Susceptibility of (a) a three-dimensional Heisenberg antiferromag-

net for a magnetic field applied parallel and perpendicular to the

magnetisation axis and (b) a powdered low-dimensional Heisenberg

antifferomagnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 (a) Theoretical phase-diagram of the S = 1 antiferromagnetic chain

taken from Ref. [4]. The red circles and blue squares represent the

quantum Monte-Carlo calculated phase boundaries. The dotted lines

are guides to the eye. The cross hatched symbols represent the es-

timated positions of some Haldane compounds from the reported D

and J ′ ≡ J⊥ values [5–10]. (b) Representation of the valence bond

solid model in spin-1 chains. The unshaded circles represent spin-1

sites which are split into two symmetric S = 1/2 moments (purple

circles), with each S = 1/2 moment interacting with an 1/2 moment

on an adjacent site (purple line). The moments at the end of finite

chains (blue arrows) are unpaired and act as paramagnets for long

chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 Figure showing the superconducting detection coil in the MPMS. The

labels −1 and +1 correspond to windings in the clockwise and anti-

clockwise directions respectively [11]. The square represents the sample. 22

vi



2.2 Antiferromagnetically coupled spin−1/2 moments fully saturate at

HC in zero-temperature (red) causing a step function in the differen-

tial susceptibility (orange). Finite temperatures (blue) smooths the

saturation point such that it can be difficult to obtain HC in the dif-

ferential susceptibility (cyan). However, by differentiating again, a

more accurate HC can be obtained as the position of the trough in

d2M/dH2 (green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Diagram for a thermal-relaxation calorimeter. The powdered sample

is pressed into a pellet and stuck to the platform using Apiezon N

grease to ensure good thermal conductivity. Gold wires thermally link

the platform to a heat sink of temperature T0 and make an electrical

connection to power the temperature sensor and heater. . . . . . . . 24

2.4 Ground state energy level diagrams for (a) easy-axis anisotropy and

(b) easy-plane anisotropy with E = 0. (c) Simulated magnetisation

of a powdered compound containing isolated S = 1 ions with easy-

plane single-ion anisotropy and E = 0. A bump in dM/dH and

a derivative shape in d2M/dH2 are expected once the applied field

causes a ground state energy-level crossing. . . . . . . . . . . . . . . 26

2.5 Simulations of Cmag vs. T and Cmag/T vs. T of powdered S = 1

(c),(e) easy-axis and (d),(f) easy-plane compounds with E = 0. . . 28

2.6 (a) Simulated position temperature of the Schottky anomaly vs. ap-

plied field for powdered S = 1 compounds with easy-plane and easy-

axis anisotropy with E = 0. (b) The local gradient versus the zero

field intercept of the data in panel (a). . . . . . . . . . . . . . . . . . 29

2.7 Resonances observed in ESR spectra of powdered samples with (a)

the Hamiltonian in Eq. 2.10 (D 6= 0 and E 6= 0) and (b) uniaxial

symmetry (D 6= 0 and E = 0). Adapted from Ref. [12]. . . . . . . . 31

2.8 Ground state energy level diagram of a D-only S = 1 magnetic ion

with easy-plane anisotropy which shows the labelling of the tran-

sitions in ESR measurements in this project. The field is applied

parallel to (a) the z-axis and (b) xy plane. In the presence of an E

term in the Hamiltonian, the xy energy-levels split and α, β and γ

resonances will be labelled with x and y subscripts depending on the

transition they refer to. . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.9 (a) Diagram of a generic unit cell with crystal axes a, b and c, and

angles between them α, β and γ labelled. (b) Elastic scattering vector

diagram with |ki| = |kf | through an angle of 2θ. . . . . . . . . . . . 36

vii



3.1 (a) 100 K structure of [Ni(3,5-lut)4(H2O)2](BF4)2 contains Ni(3,5-

lut)4(H2O)2 molecular complexes separated by two BF−4 ions and

stacked along the [101] direction. Lutidine hydrogens are omitted

for clarity. (b) Local environment around each nickel ion for both

[Ni(3,5-lut)4(H2O)2](BF4)2 and [Ni(pyz)2(H2O)2](BF4)2. Bond dis-

tances are given in Table 3.2. . . . . . . . . . . . . . . . . . . . . . . 40

3.2 150 K structure of Ni(SiF6)(H2O)(4-mepz)4. (a) Local environment

around each Ni2+ ion. (b) The NiFON4 octahedra are arrayed with

an SiF6 molecule coordinated to one Ni2+ ion hydrogen bonded to one

water molecules coordinated to an adjacent Ni2+ ion. Mepz hydrogen

atoms are omitted for clarity . . . . . . . . . . . . . . . . . . . . . . 42

3.3 150 K structure of Ni(H2O)2(acetate)2(4-picoline)2. (a) The NiN2O4

octahedron. (b) Arrangements of Ni(H2O)2(acetate)2(4-picoline)2

complexes in the yz plane. Water molecules in the x direction keep

these planes separated. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Room temperature structure of [Ni(pyz)2(H2O)2](BF4)2. (a)

[Ni(pyz)2]2+ sheets. (b) Sheets are stacked directly above each other

along c. Non-coordinated BF−4 counter-ions keep the layers well sepa-

rated. Each of the water hydrogen atoms occupies one of four equally

probable locations. Pyrazine hydrogen atoms are omitted for clarity.

The key is located in Fig. 3.1 . . . . . . . . . . . . . . . . . . . . . . 44

3.5 (a) Pulsed-field magnetization and (b) differential susceptibility data

of [Ni(3,5-lut)4(H2O)2](BF4)2, calibrated using DC SQUID magne-

tometry. (c) Gradient of the differential susceptibility indicates a

derivative shape which develops on cooling to 0.63 K. The centre of

this feature (arrow) marks Hc (see text). . . . . . . . . . . . . . . . . 46

3.6 DC susceptibility measurements of powdered [Ni(3,5-

lut)4(H2O)2](BF4)2 made at a field of 0.1 T. The data was fitted

to a D and E only model with a small, temperature independent

diamagnetic term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7 Heat capacity measurements of [Ni(3,5-lut)4(H2O)2](BF4)2. (a)

Zero-field measurements presented as Cp/T . The whole data range

is fitted to a model incorporating contributions from lattice phonons

(Eq. 2.1) and single-ion anisotropy (Eq. 3.5). The parameters ob-

tained are shown in Table. 3.4. (b) Magnetic heat capacity, resulting

from the subtraction of Clatt, as a function of temperature at fields

in the range 0 ≤ µ0H ≤ 9 T. . . . . . . . . . . . . . . . . . . . . . . 48

viii



3.8 ESR measurements of [Ni(3,5-lut)4(H2O)2](BF4)2 at different fre-

quencies, labelled in GHz and measured at temperatures of ≈ 3 K,

apart from the 321.6 and 416 GHz spectra which were recorded at

5 K. Resonances of known transitions are labelled. Spectra were

made in the frequency range (a) 145 < ν < 170 GHz and (b)

300 < ν < 630 GHz. Inset: 324 GHz spectra showing the βx and

γx transition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.9 Fitting the observed resonances from Fig. 3.8 to a D and E only

model with parameters gx = 2.20(1), gy = 2.33(2), gz = 2.05(12),

D = 10.42(7) K and E = 2.12(4) K extracted in good agreement

with the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.10 Temperature dependent ESR measurements of [Ni(3,5-

lut)4(H2O)2](BF4)2 at 5 K (green line), 30 K (red line) and 80

K (blue line) at ν = 412.8 GHz. The black line is an ESR simulation

obtained from a fit to all observed resonances [see Fig. 3.9(b)] at 5 K. 53

3.11 (a) Low temperature pulsed-field magnetisation measure-

ments, calibrated with SQUID magnetisation measurements, of

Ni(SiF6)(H2O)(4-mepz)4. (b) Differential susceptibility and gradient

of the differential susceptibility shows the feature attributed to

easy-plane anisotropy at 7.8(6) T. . . . . . . . . . . . . . . . . . . . 54

3.12 DC susceptibility measurement of Ni(SiF6)(H2O)(4-mepz)4shows a

rise in the data before it plateaus as the temperature is lowered.

This was fitted to a D and E only model with the parameters D =

11.25(2) K, E = 0.57(10) K and g = 2.25(1) extracted. The model is

in good agreement with the data. . . . . . . . . . . . . . . . . . . . . 55

ix



3.13 (a) ESR spectra of powdered Ni(SiF6)(H2O)(4-mepz)4 labelled in

GHz for each spectra. Measurements were performed at ≈ 3 K (100,

104, 109.6, and 112 GHz) and 5 K (108, 208 and 326.4 GHz). Reso-

nances of known transitions are labelled. The resonances marked with

* are likely to be due to impurities. A 5 K simulation at 326.4 GHz

with the parameters obtained from a D and E only fit to the observed

resonances (Fig. 3.14) has been added in good agreement with the

data. The circled resonances in the 326 GHz data and simulation

correspond to the αx and αy transitions. (b) Temperature depen-

dent ESR spectra at 108 and 208 GHZ. The decrease in the intensity

of the low-field z-transition as the temperature is increased is clearly

observed in both spectra, indicating that D > 0. Inset: 30 K ESR

spectra at 208 GHz showing the γy transition at 10.3 T. This is not

observed in the low temperature data and suggests that D > 0. . . . 56

3.14 Fitting of the transitions from Fig. 3.13 to a D and E only model

which yields the parameters D = 11.45(2) K, E = 0.49(1) K, gx =

2.240(7), gy = 2.228(5) and gz = 2.158(5). . . . . . . . . . . . . . . . 57

3.15 (a) SQUID magnetisation measurements of powdered

Ni(H2O)2(acetate)2(4-picoline)2 at different temperatures. The

lowest temperature data saturates above 2µb. The 10 K data has

been fitted with a Brillouin function, with g = 2.178(1) extracted.

(b) Differential susceptibility of Ni(H2O)2(acetate)2(4-picoline)2

shows no evidence of critical fields due magnetic interactions or

ground state energy-level crossings. . . . . . . . . . . . . . . . . . . . 58

3.16 DC susceptibility measurement of Ni(H2O)2(acetate)2(4-picoline)2

shows a rise in the data as the temperature is lowered. This was

fitted to a D and E only model with a small diamagnetic component.

The parameters D = −5.78(8) K, E = 1.38(2) K, g = 2.22(1) and

χ0 = −2.4(1.0) m3mol−1 extracted. The model is in good agreement

with the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.17 (a) Zero-field heat capacity measurement of Ni(H2O)2(acetate)2(4-

picoline)2. The data below 30 K is fitted to a model with one Debye,

one Einstein mode and a single-ion anisotropy term. The parameters

obtained are shown in Table. 3.5. (b) Magnetic heat capacity of

Ni(H2O)2(acetate)2(4-picoline)2 resulting from the subtraction of Clatt. 60

x



3.18 (a) DC susceptibility measurements and [inset]: d(χT ) /dT of pow-

dered [Ni(pyz)2(H2O)2](BF4)2. (b) Inverse susceptibility fitted to a

Curie-Weiss model over the range 100 ≤ T ≤ 300 K with parameters

g = 2.19(1), θw = −3.4(3) K and χ0 = +1.3(1) m−3mol extracted. . 64

3.19 (a) Pulsed-field magnetisation vs. applied field for powdered

[Ni(pyz)2(H2O)2](BF4)2. (b) Differential susceptibility shows two

critical fields (measured from the lowest temperature pulsed-field up

sweep). Inset: gradient of the differential susceptibility is used to

determine Hsat (see text). . . . . . . . . . . . . . . . . . . . . . . . . 65

3.20 (a) Ratio of heat capacity to temperature vs. temperature for

[Ni(pyz)2(H2O)2](BF4)2 in zero-field. The solid line is a fit to the

data from 24 ≤ T ≤ 304 K to a model of one Debye and three

Einstein modes. (b) Entropy vs. temperature in zero-field. (c)

Magnetic heat capacity vs. temperature for [Ni(pyz)2(H2O)2](BF4)2,

resulting from the subtraction of Clatt, in applied fields in the range

0 ≤ µ0H ≤ 9 T.(d) Magnetic heat capacity vs. temperature around

the Schottky anomaly. (e) Measured temperature of the broad max-

imum vs. applied field scaled by the g-factor. . . . . . . . . . . . . . 66

3.21 (a) Example spectra for [Ni(pyz)2(H2O)2](BF4)2 at selected temper-

atures. Red lines are a fit using Eq. 3.6 and the blue line is a fit to

Eq. 3.7. (b) Temperature dependence of the fitted parameters using

Eq. 3.6 (top) and Eq. 3.7 (see text). The border of the white/gray

area is at T = 3.2 K and the dashed line is a guide to the eye. . . . . 68

3.22 (a) Scattered neutron intensity at 1.5 K as a function of d-spacing

for [Ni(pyz)2(H2O)2](BF4)2. The three magnetic peaks are marked

with * and correspond to (from left to right) the [101], [103] and

[211] families of reciprocal lattice vectors. (b) The 10 K data has

been subtracted leaving the magnetic contribution to the 1.5 K mea-

surement. The relative diffraction intensities are consistent with easy-

plane anisotropy. Note that the artefacts that arise in the subtraction

of the brightest nuclear reflections in the presence of a slight lattice

contraction have been masked. . . . . . . . . . . . . . . . . . . . . . 69

3.23 Temperature dependence of the ordered moment in [Ni(D2O)2(pyz-

d4)2](11BF4)2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

xi



3.24 Phase Diagram of [Ni(pyz)2(H2O)2](BF4)2. As the temperature is

lowered below 7.3(7) K the sample moves from a pure paramagnetic

(PM) into an easy-plane anisotropy dominated paramagnetic phase

(PM-EP). As the temperature drops further, the sample undergoes a

transition to long-range order below 3.0(2) K (AFM). On increasing

the field, moments saturate for fields perpendicular to and then par-

allel to the z-axis. The moments are fully saturated at ≈ 16 T (FM).

Lines are a guide to the eye. . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 Room-temperature structure of NiF2(3,5-lut)4·H2O (a): Chains of

Ni2+ ions (silver) are bridged by two F− ions (green) along the z-

axis. H2O molecules have been omitted for clarity. (b): Chains

are separated in the xy plane by lutidine molecules. (c): Unit cell of

NiF2(3,5-lut)4·H2O. The red ring indicates the structurally disordered

oxygen atom from the water molecule. Lutidine and water hydrogen

atoms have been omitted for clarity. . . . . . . . . . . . . . . . . . . 76

4.2 100 K structure of NiX2(3,5-lut)4. (a) Layout of local environ-

ment around each Ni2+ ion (silver) in NiX2(3,5-lut)4. (b) Lutidine

molecules (carbon = black) keep Ni-X-X-Ni chains well separated in

the xy-plane. Lutidine hydrogen atoms have been omitted for clar-

ity. (c) Ni-X-X-Ni chains in NiX2(3,5-lut)4 (X= Cl, Br, I = purple).

Nickel ions in adjacent chains are offset in the z direction. (d) Chains

of Ni2+ ions are bridged by HF−2 ions (H = beige and F = green) in

Ni(HF2)2(3,5-lut)4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 (a) Low-temperature magnetisation and (b) differential susceptibil-

ity measurements of NiF2(3,5-lut)4·H2O. A critical field indicating

the ground-state energy-level crossing is observed at µ0Hc = 5.7(5) T. 80

xii



4.4 (a) ESR spectra of Ni(HF2)2(3,5-lut)4 made at 20 K and frequencies

of 203.2, 321.6 and 406.4 GHz. Large resonances are observed in all

three spectra which were fitted using a D-only Hamiltonian. The

obtained parameters were then simulated in good agreement with

the data. (b) The results of the fit to a D only Hamiltonian are

gxy = 2.23(2), gz = 2.16(2) and D = ±11.97(2) K, and the position of

all transitions are overlaid onto the resonances in good agreement. (c)

Temperature dependence of the 321.6 GHz Ni(HF2)2(3,5-lut)4 ESR

spectra. The intensity of the low-field xy transition (β) decreases as

temperature increases whereas the high-field transition (γ) increases.

This is indicative of easy-plane anisotropy. . . . . . . . . . . . . . . . 81

4.5 (a) Pulsed-field magnetisation, (b) differential susceptibility and

d2M/dH2 measurements of powdered NiCl2(3,5-lut)4 at T = 0.63 K

data. Hc indicates the energy-level crossing point described in Fig.

2.4(c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6 DC susceptibility measurements made at an applied field of 0.1 T

using a Quantum Design MPMS SQUID of NiCl2(3,5-lut)4. Inset:

χ−1 (T ) for NiCl2(3,5-lut)4 showing the deviation from the Curie-

Weiss model at T ≈ 20 K. . . . . . . . . . . . . . . . . . . . . . . . 84

4.7 (a) ESR measurements of powdered NiBr2(3,5-lut)4 at 5 K. All ob-

served resonances are are labelled depending on which branch they be-

long to in the field-frequency plot in (b). The resonance marked with

* is of an unknown origin but is likely to be an impurity. A Simula-

tion at 326 GHz using the parameters extracted from a D only fit was

added and is consistent with the data. (b) Fitting the resonances in

all the ESR spectra of NiBr2(3,5-lut)4 to a D-only Hamiltonian. (c)

Temperature dependent ESR spectra of NiBr2(3,5-lut)4 at 326 GHz

showing the increase in the intensity of the low-field xy transition as

temperature drops. This indicates that D > 0 for NiBr2(3,5-lut)4. . 85

4.8 (a) Low-temperature magnetisation and (b) differential susceptibil-

ity measurements of powdered NiBr2(3,5-lut)4. . . . . . . . . . . . . 86

xiii



4.9 (a) Susceptibility measurements of powdered NiBr2(3,5-lut)4. Whilst

a Borrás-Almenar fit models the data well, the parameters do not

agree with other experimental techniques. As it has been shown that

many combinations of J and D can give the same fit [13], simula-

tions of the Borrás-Almenar and D-only model using the parameters

from the magnetisation measurements were overlaid. There is no

agreement with the data and the simulations. (b) Inverse suscepti-

bility measurements of NiBr2(3,5-lut)4 show a good agreement with

a Curie-Weiss model down to low temperatures. This can be seen

more clearly in (c) where there is a deviation from a straight line in

χT below ≈ 30 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.10 Frequency dependent ESR measurements of powdered NiI2(3,5-lut)4

at (a) 30 K and (b) 3 K. The positions of the single resonance at 30

K has been modelled with a linear fit (see text). In (b), the blue and

green resonances are due to ms = ±1 and ms = ±2 transitions within

the triplet state respectively. (c) Resonances observed in the 3 K data

are plotted with linear fits. The red resonances are unknown transi-

tions (see text).(d) Energy level diagram of a spin-1 AFM chain in

the Haldane phase showing the allowed and forbidden ESR transitions. 89

4.11 (a) Low-temperature magnetisation and (b) differential susceptibil-

ity measurements of NiI2(3,5-lut)4. See text for an explanation of the

critical fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.12 (a) DC susceptibility measurements of powdered NiI2(3,5-lut)4 mod-

elled with Eq. 4.3 over the whole data range. (b) Quasi-static SQUID

magnetisation measurements of powdered NiI2(3,5-lut)4. The lowest

temperature data set has been fitted with Eq. 4.2 in the field range

0 ≤ µ0H ≤ 2 T. [Inset]: dM/dH and d2M/dH2 of the 0.5 K data

showing the field at which the Haldane gap closes. . . . . . . . . . . 92

4.13 (a) Zero-field heat capacity measurements of powdered NiI2(3,5-

lut)4 pressed into a pellet show a large and broad hump due to

the lattice contribution at high temperatures. This was fitted to

a model with one Debye and three Einstein modes over the range

10 ≤ T ≤ 300 K. (b) Magnetic heat capacity of NiI2(3,5-lut)4 at a

different fields in the range 0 ≤ T ≤ 9 T. . . . . . . . . . . . . . . . . 94

xiv



4.14 (a) Effect of bond lengths in the NiX2N4 octahedra in NiX2(3,5-lut)4

on the magnitude of the single-ion anisotropy parameter D. DNi−X

is the Ni-halide bond length and DNi−N is the Ni-N bond length.

The y axis is positioned at DNi−X/DNi−N = 1 which corresponds

to a symmetric local environment around the Ni2= ion. The pre-

viously published structural and D parameters of NiCl2(pyz)2 [1],

[Ni(HF2)(pyz)2](SbF6)2 [13] and [Ni(HF2)(3-Clpy)4](BF4)2 [10] have

been used. (b) Effect of the electronegativity difference between

the halide ions and the N atoms (Ee) has on D in NiX2N4 octahe-

dra. NiI2(3,5-lut)4 has been set at DNi−X/DNi−N + aEe = 1, where

a = 0.875 is a calibration factor (see text). . . . . . . . . . . . . . . . 98

5.1 Decomposition of an antiferromagnetic square lattice into dimer (D

- light red) and ladder (L - light blue) bonds. . . . . . . . . . . . . . 101

5.2 (a) 87(2) K x-ray structure of (QuinH)2CuBr4·2H2O shows the dis-

torted CuBr2−
4 tetrahedra layer in the crystal ab plane. Dashed lines

illustrate close Br-Br contacts and OH-Br hydrogen bonds. This fig-

ure has been taken from Ref. [2]. (b) 150(2) K X-ray structure of

(QuinH)2CuCl4·2H2O showing the view down the a-axis with quino-

linium ions (C9H8N+) keeping Cu-Cl planes well separated. This fig-

ure has been taken from Ref. [3]. The two compounds are isostructural.103

5.3 (a) Pulsed-field magnetisation measurements of

(QuinH)2CuBr4·2H2O (red) and (QuinH)2CuCl4·2H2O (blue).

The data presented here is from the down sweep of the magnetic

field. (b) Differential susceptibility and gradient of differential

susceptibility of (QuinH)2CuBr4·2H2O (pink and maroon) and

(QuinH)2CuCl4·2H2O (dark blue and light blue). See table. 5.2 for

the temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4 (a) The 0.112 K µ-SR asymmetry spectra of (QuinH)2CuBr4·2H2O

and (b) temperature dependence of the highest frequency oscillation

from (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5 (a) Time evolution of the asymmetry at 0.1 K (blue line) and 1.8 K

(green line). The light blue and light green lines indicate the errors

in the data. The orange line is a fit of the 0.1 K data to Eq. 5.8 and

the red line is a fit of the 1.8 K data to Eq. 5.5. (b) Temperature

dependence of γ. The red line is a fit to Eq. 5.6. (c) Temperature

dependence of ν. The red line is a fit to Eq. 5.9 . . . . . . . . . . . . 109

xv



5.6 Comparison of the time evolution of the asymmetry at 0.44 K (red

line) and 0.45 K (blue line). The light blue and orange lines indicates

the errors in the 0.44 K and 0.45 K data respectively. . . . . . . . . 111

5.7 Low-temperature pulsed-field magnetisation data of

(QuinH)2Cu(ClxBr1−x)4·2H2O taken in decreasing fields for

(a) x ≤ 0.25, (b) 0.41 ≤ x ≤ 0.835 and (c) 0.84 ≤ x. See table. 5.2

for the temperature that each measurement was taken at. . . . . . . 113

5.8 Down sweep dM/dH and d2M/dH2 data for

(QuinH)2Cu(ClxBr1−x)4·2H2O with (a) x = 0.605, (b) x = 0.74,

(c) x = 0.835 and (d) x = 0.84. The lack of a critical field Hc in

the x = 0.74 and x = 0.835 data is indicative of a disordered phase

in these samples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.9 Phase diagram showing the critical fields in pulsed-field magnetisation

measurements for different concentrations x. . . . . . . . . . . . . . . 115

5.10 Left column: the lowest temperature µ-SR asymmetry spec-

tra of (QuinH)2Cu(ClxBr1−x)4·2H2O. From top to bottom is

(QuinH)2CuBr4·2H2O (added for comparison) and then x = 0.01,

0.09. 0.23, 0.25, 0.41. Right column: temperature dependence of the

highest frequency oscillation from the left column. . . . . . . . . . . 116

5.11 Ordering temperature of (QuinH)2Cu(ClxBr1−x)4·2H2O as a function

of x (green dots). The x ≤ 0.25 data points have been fitted to a

linear model with xC1 = 0.39 (green line). Also included are the

predicted ordering temperatures for (QuinH)2Cu(ClxBr1−x)4·2H2O

using the values of J obtained from magnetisation measurements,

and assuming that J⊥ is constant and Eq. 5.10 holds for all x . . . . 117

xvi



5.12 Proposed phase diagram of (QuinH)2Cu(ClxBr1−x)4·2H2O. The

phase boundaries are estimates suggested by the experimental data

(see text). As x increases from zero, (QuinH)2Cu(ClxBr1−x)4·2H2O

remains in an antiferromagnetically ordered state at T = 0

until quantum fluctuations destroy long-range order at xc1 =

0.39. (QuinH)2Cu(ClxBr1−x)4·2H2O then enters a quantum Grif-

fiths phase with large magnetically ordered regions. At xc2 = 0.61,

(QuinH)2Cu(ClxBr1−x)4·2H2O becomes fully disordered with no ev-

idence of short range correlations. A sharp saturation point re-

emerges at x = 0.84 and there is long range order at T = 0 for

(QuinH)2CuCl4·2H2O. For x > 0.8, patterned regions correspond to

estimated regions mirroring the low-x end of the spectrum, with more

experiments required to map out the phase boundaries at high-x. . . 119

xvii



Acknowledgments

I would firstly like to thank my supervisor Paul Goddard for his support, guidance

and patience throughout my four years as a postgraduate student. Special thanks to

Jamie Brambleby for getting me started. I would also like to thank Martin Lees for

his invaluable, extensive help with the measurement systems, and Oleg Petrenko,

Tom Orton, Ali Julian and Patrick Ruddy for further technical assistance. Thanks

also to the rest of the Superconductivity and Magnetism group for stimulating dis-

cussions, both related and unrelated to my work! My undercutting of the tea and

coffee club will unfortunately have to end.

I am very appreciative of the work by Jamie Manson, Jacqueline Villa,

Danielle Villa and Fan Xiao, who made the materials studied in this thesis, and for

their advice. A big thanks to John Singleton in Los Alamos and Andrew Ozarowski

in Tallahassee for enabling me collect data, and their advice. Also to my collabora-

tors Tom Lancaster and Roger Johnson for helping me with understanding the finer

points of µ-SR and neutron scattering respectively.

I am much appreciative of all my friends, both based at Warwick and else-

where, for helping me retain what little sanity I had. Especially those, who are too

many to name, who have joined me at Pub Wednesday, on socials, and shared the

Flunkyball arena with me! Shout outs to Hary, Wilf and Connor as well for showing

continuous interest in me and whisking me away to various place and events!

A final, massive thanks to my parents Alison and Tony, and sister Rachel,

without whose love and support this thesis would not be.

xviii



Declarations

This thesis is submitted to the University of Warwick in support of my application

for the degree of Doctor of Philosophy. It has been composed by myself and has

not been submitted in any previous application for any degree. Experimental work

presented in this thesis was carried out between October 2014 and September 2018

at the University of Warwick, the Pulsed Field Facility at the National High Magnet

Field Laboratory (NHMFL) at Los Alamos National Laboratory (LANL) USA, the

Electron Magnetic Resonance Facility at the NHMFL in Tallahassee USA, the ISIS

Neutron and Muon Source at the Rutherford Appleton Laboratory and the Lab-

oratory for Muon Spin Spectroscopy (LMU) at the Paul Scherrer Institute (PSI)

Switzerland. This work, including data generated and data analysis, was carried

out by myself except in the cases outlined below.

Powdered samples of [Ni(3,5-lut)4(H2O)2](BF4)2, Ni(SiF6)(H2O)(4-

mepz)2, Ni(H2O)2(acetate)2(4-picoline)2, [Ni(pyz)2(H2O)2](BF4)2, [Ni(D2O)2(pyz-

d4)2](11BF4)2, NiX2(3,5-lut)4 (X = HF2, Cl, Br, I) and NiF2(3,5-lut)4·H2O were

prepared by Dr. Jamie Manson, Jacqueline A. Villa and Danielle Y. Villa at the

Department of Chemistry and Biochemistry, Eastern Washington University, USA.

The structures of [Ni(3,5-lut)4(H2O)2](BF4)2 and NiX2(3,5-lut)4 were obtained

by Dr. John Schlueter and Dr. Yu-shen Cheng at the Advanced Photon Source,

Argonne National Laboratory, USA. The structure of [Ni(pyz)2(H2O)2](BF4)2

was obtained by Dr. Saul Lapidus at the Advanced Photon Source, Argonne

National Laboratory, USA. The structures of Ni(SiF6)(H2O)(4-mepz)2 and

Ni(H2O)2(acetate)2(4-picoline)2 were obtained by Dr. Atta Arif at the University

of Utah, USA. The structure of NiF2(3,5-lut)4·H2O was obtained by Dr. Robert

xix



Williams and Sam Curley at the University of Warwick. Single crystals of

(QuinH)2Cu(ClxBr1−x)4·2H2O were grown and the relative abundance of the halide

ions determined by Dr. Fan Xiao (now at the University of Bern) with the help

of Prof. Mark Turnbull at Clark University, USA. Pulsed-field measurements of

[Ni(pyz)2(H2O)2](BF4)2, NiX2(3,5-lut)4 (X = Cl, Br, I) and NiF2(3,5-lut)4·H2O

were performed by Dr. Jamie Manson, Dr. John Singleton and Serena Birnbaum

but the resultant data was analysed by myself. Secondary up pulsed-field measure-

ments of (QuinH)2Cu(ClxBr1−x)4·2H2O with (x = 0.17, 0.57, 0.74) were performed

by Matthew Pearce but the resultant data was analysed by myself. Electron spin

resonance measurements of NiX2(3,5-lut)4 (X = HF2, Br, I) were performed by

Dr. Jamie Manson and Dr. Andrew Ozarowski but the resultant data was analysed

by myself. SQUID magnetometry measurements of [Ni(pyz)2(H2O)2](BF4)2 and

heat capacity measurements of Ni(H2O)2(acetate)2(4-picoline)2 were performed by

Jamie Brambleby at The University of Warwick but the resultant data was analysed

by myself. Muon spin resonance measurements of (QuinH)2Cu(ClxBr1−x)4·2H2O

(x = 0, 0.01, 0.09, 0.23, 0.25, and 0.41) were performed and analysed by Dr. Fan

Xiao and Dr. Robert Williams at PSI. Muon spin resonance measurements of

[Ni(pyz)2(H2O)2](BF4)2 were performed and the data analysed by Dr. Fan Xiao,

Dr. Tom Lancaster, Dr. Robert Williams and Dr. Stephen Blundell at PSI. Elastic

neutron scattering data of [Ni(pyz)2(H2O)2](BF4)2 was analysed by Dr. Roger

Johnson at Oxford University.

The work presented in this thesis was also presented at the following confer-

ences as a poster presentation:

• The 12th International Symposium on Crystalline Organic Metals, Supercon-

ductors and Magnets (ISCOM) “Halide Substitution in a Low-Dimensional

Molecular Magnet” Zao, Miyagi, Japan (2017);

• Magnetism “Magnetic exchange disorder in low-dimensional quantum mag-

nets” Manchester, UK (2018);

and in the form of oral presentations at:

xx



• Magnetism “Characterisation of powdered low-dimensional spin-1 antiferro-

magnets with single-ion anisotropy” York, UK (2017);

• New Frontier of Molecular Materials (NFMM) “Halide Substitution in a Low-

Dimensional Molecular Magnet” Sendai, Japan (2017).

Related work that will not be discussed further in this thesis has been pub-

lished as:

• Leonardo H. R. Dos Santos, Arianna Lanza, Alyssa M. Barton, Jamie Bram-

bleby, William J. A. Blackmore, Paul A. Goddard, Fan Xiao, Robert C.

Williams, Tom Lancaster, Francis L. Pratt, Stephen J. Blundell, John Single-

ton, Jamie L. Manson and Piero Macchi, Journal of the American Chemistry

Society 138, 7, 2280 (2016).

xxi



Abstract

The ability to control the magnetic properties of low-dimensional magnetic
systems is a major aim of research in condensed matter physics. Bespoke magnetic
systems have potential uses in many practical applications and experimental inves-
tigations of theoretical predictions. To achieve this goal necessitates being able to
determine the magnetic properties of these systems, which can require much expense
in time, money and effort. In this thesis I present a methodology that can be used
for characterising the properties of powdered, low-dimensional spin-1 antiferromag-
nets using commercially available measurement systems. The techniques involved
are able to determine the magnetic properties of powdered systems containing iso-
lated and exchange-coupled Ni2+ ions accurately enough such that a decision on
growing single-crystals or measurements requiring more complicated measurements
at specialist facilities can be made. Using this method, I then characterise the mag-
netic properties of a family of similar Ni2+-halide-halide-Ni2+ chains which show
differing magnetic behaviour linked to the different bridging ligands. It is found
that single-ion anisotropy in Ni2+ octahedral environments is not just dependent on
the placement but also the electronic properties of the coordinated non-magnetic
ligands. Also, magnetic interactions along the Ni2+ chains are strongly influenced
by the size of the bridging halide ions. The distance between adjacent ions is less im-
portant. This property was exploited to explore bond disorder in the spin-1/2 quasi
two-dimensional antiferromagnet (QuinH)2Cu(ClxBr1−x)4·2H2O, which occurs due
to the presence of two competing superexchange pathways with different interaction
strengths. As the concentration increases from x = 0, disorder enhances quan-
tum fluctuations which destroy long-range order before the percolation threshold
is reached. This leads to multicritical points and the possible rise of a quantum
Griffiths phase.
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Chapter 1

Introduction

Magnetism was first discovered by the ancient Greeks in the 8th century BC [14],

where it was noticed that lodestone, a naturally occurring magnetised material,

could attract iron. The Chinese appear to be the first to discover the significance

of the magnetic needle and it’s application to navigation with the invention of the

concept of true north in the 11th century AD. By the 12th century AD, lodestone

was commonly used for navigation, albeit crudely. This was rectified by Pierre

Pelerin de Maricourt, who described how to identify the poles of the compass and

also the laws of magnetic attraction and repulsion [15]. de Maricourt also appeared

to be the first to observe the magnetic field lines emanating from a spherical piece of

lodestone. At this time compasses were “wet” and consisted of a magnetic material

placed on an insulator that floated on water. The Yemeni astronomer Prince al-

Ashraf, amongst others in the Middle East, made strides in the development of the

dry compass, which did not require water and allowed the use of the device at sea

[16]. This allowed the development of a much more accurate compass leading to the

wider ranged explorations of the 14th and 15th centuries. Whilst it was known that

magnetic needles pointed in a north-south direction, the reasons for such behaviour

was not fully understood. In 1600, William Gilbert and partner Aaron Dowling

described that the whole Earth itself was a magnet [17], whereas previously it was

thought that a large magnetic island at the north pole caused the alignment of

compasses.

1.1 Basics of magnetism

Up until this point, only the macroscopic properties of magnets had been investi-

gated with anything close to being called scientific methods. In the 18th century
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however, studies began to touch on the microscopic properties. Initially, the theory

of magnetism was based on variations of fluids and also involved electricity. It was

Charles Augustin Coulomb who first established that magnetic “fluids” are not free

to flow like electric “fluids”, but are bound to individual molecules. This led to the

idea of the magnetic moment µ. Classically, this can be modelled as a current I

moving in a circle (of area A) via dµ = IdA. At the microscopic level, magnetic

moments occur due to unpaired electrons orbiting around a nucleus within orbitals.

Therefore, the magnetic moment of an orbiting electron is proportional to the orbital

angular momentum (L) of the electron

µ = γL, (1.1)

where γ is the gyromagnetic ratio. In a magnetic field B, the moment has energy

E = −µ ·B, (1.2)

and torque

G = µ×B. (1.3)

In isolation, Eq. 1.3 would suggest that µ would like to align with the magnetic

field. However, because torque is equal to rate of change of angular momentum,

where L is given by Eq. 1.1, then Eq. 1.3 can be rewritten as [12]:

dµ

dt
= γµ×B. (1.4)

This shows that any change in µ is perpendicular to both µ and B. Therefore, the

direction of magnetic moments will precess around the applied magnetic field [18].

Whilst it was believed that there was connection between magnetism and

electricity, it wasn’t until the early 19th century before this was observed experi-

mentally by Hans Christian Ørsted (commonly referred to as Oersted), who observed

the flickering of a compass close to a current carrying wire, verifying this belief [19].

However, it took until the early 20th century with the advent of quantum mechanics

before magnetism could be explained properly. This is because the electron itself

has an intrinsic angular momentum called spin (S), which is characterised using

the spin quantum number S and component of spin angular momentum ms. The

component of the spin angular momentum can take one of 2S + 1 values (S, S − 1,

S−2, . . ., −S) [20]. One electron has S = 1/2 and ms = ±1/2. These components

are called up and down respectively. The orbital angular momentum also has the
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quantum numbers L and ml which are analogous to the spin quantum numbers. The

magnetic moment on an atom comes from the total angular momentum J, which is

defined by [21]

J = L + S. (1.5)

which has quantum numbers J and mj . For atoms with unfilled electron shells,

an unpaired electron or electrons can impart non-zero spin (S) and orbital angular

momentum (L). Spin and orbital angular momentum are independent for free elec-

trons, but they do couple when confined into orbitals. This effect is called spin-orbit

coupling which has energy λ [12]. Hence, L and S are not individually conserved

for electrons within atoms but the total angular momentum J = L + S is. This

gives a large range of values for which J can take. However, a value of J for any

atom can be given by Hund’s rules. They are empirical rules that only apply to the

ground state and assumes only one subshell is incomplete. In order of decreasing

importance, they are

1. Maximise spin angular momentum. This minimises the Coulomb energy be-

tween electrons which arises from the Pauli exclusion principle (two electrons

cannot occupy the same quantum state).

2. Maximise orbital angular momentum. This also minimises energy as electrons

moving in the same direction are less likely to come into contact with each

other.

3. The value of J is found by using |L − S| if the shell is less than half full and

|L+ S| if the shell is more than half full. This is an attempt to minimise the

spin-orbit energy.

Hund’s rules do not fully apply in certain cases. One example is the 3d

transition metal ions with unfilled outer shells. In these materials, the crystal field

interaction is much stronger than the spin-orbit interaction. This quenches the

orbital angular momentum L and the third law doesn’t apply. Therefore, the spin

of 3d transition metal ions is due to the spin angular momentum of the unpaired

electron, or electrons, in the outer shell (J = S). As it is 3d transition metal ions with

unfilled outer shells that I am investigating in this thesis, I will use S to represent

the spin of the ions from now on. Atoms with more than one unpaired electron will

have S > 1/2 and therefore different ms values. This will be discussed further in

section 1.2.3. The size of µ is commonly measured in units of the Böhr magneton,
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which is defined as the magnetic moment of a hydrogen atom with an electron in

the ground state;

µb =
e~

2me
, (1.6)

and has the value µb = 9.274× 10−24 Am−2.

1.2 Non-interacting moments in a magnetic field

For an electron in a magnetic field B, the energy is given by

E = gµbmsB (1.7)

and therefore the energy levels of electrons split in a magnetic field. This is known

as Zeeman splitting. In Eq. 1.7, g is the g-factor, which is a proportionality constant

that relates the observed magnetic moment to the total spin and the Bohr magneton

µb. For free electrons ge = 2.0023 [22], but this changes for electrons bound in

orbitals inside magnetic materials. This is due to different relative contributions of

spin and orbital angular momentum. The Zeeman effect introduces the following

term into the Hamiltonian of a material containing atoms with unpaired electron

ĤZeeman = µb
∑
j

g · Sj ·B. (1.8)

where the sum is over all atoms in the compound. In magnetic systems, the overall

moment per unit volume is known as the magnetisation (M) and is the vector sum

of all the magnetic moments. This is related to the magnetic flux density (B) and

magnetic field strength (H) via

B = µ0 (H + M) , (1.9)

where µ0 = 4π × 10−7 Hm−1 is the magnetic permeability of free space in which

B = µ0H. H is the field applied to the sample and is produced by a current carrying

wire which is applied to a magnetic material whereas B is the total magnetic field

in the sample. At small applied fields, the magnetisation is directly proportional to

the magnetic field H via the dimensionless magnetic susceptibility χ. For magnetic

materials, molar susceptibility (χm) is commonly used and is defined as

χm = χVm =
MVm

H
, (1.10)
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where Vm is the volume of one mole of the sample and therefore χm has units of

m3mol−1.

1.2.1 Diamagnetism

All materials exhibit a magnetic susceptibility due to diamagnetism [23]. It occurs

when a magnetic field is applied to the material and moments act to oppose the

field. The diamagnetic susceptibility is given by

χ = −Ne
2µ0

6meV

Z∑
i=1

〈r2
i 〉 (1.11)

for a sample of volume V containing N atoms each with Z electrons of mass me at

a distance r from the centre of the nucleus (assuming spherical symmetry). As the

temperature increases, excited states become more important, though not signifi-

cantly. Hence diamagnetism is considered to be largely temperature independent.

Diamagnetism dominates in atoms with no unpaired electrons. The compounds in

this thesis contain unpaired electrons and as such the diamagnetic susceptibility is

small compared to other affects.

1.2.2 Paramagnetism

In compounds containing atoms with a non-zero magnetic moment due to unpaired

electrons, the much stronger paramagnetic susceptibility dominates. This corre-

sponds to a positive susceptibility due to an applied magnetic field inducing a mag-

netisation which aligns parallel with the magnetic field. In the absence of a magnetic

field, isolated moments point in random directions. The application of the magnetic

field acts to line up the moments with the field. An increase in temperature will in-

crease the randomisation of the atoms and so the magnetisation of a material made

up of isolated moments will depend on the ratio B/T [24].

The probability that a system is in a state α with energy Eα is proportional

to the Boltzmann factor e−βEα (β = 1/kbT ) [25]. The partition function

Z =
∑
α

e−βEα , (1.12)

is defined as the sum over all the states of the Boltzmann factors [26]. The magni-

tudes of Eα are somewhat arbitrary, what is important is the differences between the

energy levels. Hence the ground state energy is given the value of E0 = 0. From the

partition function, the magnetisation as a function of field M(H) and heat capacity
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as a function of temperature Cp(T ) of isolated magnetic moments can be calculated.

Magnetisation is given by

M(H) = − (∂F/∂H) , (1.13)

where F = −kbT lnZ is the Helmholtz function and heat capacity is

Cp(T ) = (∂U/∂T ) , (1.14)

where U = −d(lnZ)
dB is the internal energy. Eq. 1.13 gives rise to two relationships

describing the magnetisation of isolated paramagnets. For a system of moments

with arbitrary spin S, the Brillouin function is used to model the magnetisation

[27]:

M = Ms

[
2S + 1

2S
coth

(
2S + 1

2S
y

)
− 1

2S
coth

( y

2S

)]
, (1.15)

where

Ms = gsµbS, (1.16)

is the saturation magnetisation, and

y = gsµbSB/kbT. (1.17)

At low fields, Eq. 1.15 can be simplified to give the Curie Law for susceptibility,

which is

χ =
g2
sµ

2
Bµ0S(S + 1)

3kbT
. (1.18)

1.2.3 Single-ion effects

In crystals containing 3d transition metals, the electronic energy levels of each metal

ion is different to that of a free ion due to the interaction with surrounding atoms.

This occurs due to a weak spin-orbit coupling interaction from unpaired electrons

in the outer shells giving rise to electrostatic fields within the crystal which is called

the crystalline electric field, or crystal field. As d orbitals within magnetic ions are

not spherically symmetric, this induces an angular dependence within the atom.

Local environments are also commonly not spherically symmetric, so the orbitals

will behave in different ways to different structures. 3d transition metal ions, such

as Ni2+, contain five distinct d orbitals. These d orbitals fall into two classes, t2g

orbitals (dxy, dxz and dyz) which point in between the a(x), b(y) and c(z) crystal axes

and the eg orbitals (dz2 and dx2−y2) which point along these axes [28]. Depending
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on the surrounding environment, the t2g and eg will split in energy. In octahedral

environments, ligands are coordinated along the x, y and z-axes. Hence, the eg

orbitals will overlap with the ligand orbitals and are raised in energy. The t2g orbitals

have no overlap with the ligand orbitals and therefore are lowered in energy.

For ions with unfilled 3d orbitals, the order in which the orbitals are filled is

different depending on the strength of the crystal field. If the crystal-field effects are

weak, then the Coulomb energy of putting two electrons close together dominates

and the electrons singly occupy all orbitals before it doubly occupies any orbital.

However, if the crystal field energy is larger than the Coulomb pairing energy then

electrons will doubly occupy the lower energy orbitals before they try and occupy

the higher energy orbitals. This is an important effect as it dictates the spin of

the ion which in turn will affect the magnetic properties. For example, a Co2+ ion

contains seven electrons in its outer 3d shell. In an octahedral environment the

three t2g orbitals are in the ground state. For strong crystal fields, these are fully

populated first, leaving one, unpaired, electron in one of the eg levels. This gives

the Co2+ ion an overall spin of S = 1/2. For weak crystal fields, all five orbitals are

occupied singularly before the remaining two electrons double up. This leaves three

unpaired electrons, and therefore a spin of S = 3/2. The magnetic properties of the

magnetic ion can also influence the surrounding environment via the Jahn-Teller

effect. This occurs because the elastic cost of distorting, for example, an octahedral

environment around the magnetic ion is balanced by the electronic energy saving of

the distortion [29].

For S > 1/2, the crystal field can split the ms energy levels in zero-field and

is therefore called zero-field splitting [30] and is described using the Hamiltonian

term [31]:

Ĥspin = S ·D · S (1.19)

where D, the zero-field splitting tensor, is symmetric and traceless. Assuming that

the D tensor in Eq. 1.19 and the g tensor in Eq. 1.8 have the same principal axes,

then for a system of S ≥ 1 ions Eq. 1.19 can be rewritten to [32]

Ĥspin = D
∑
i

Ŝz2
i + E

∑
i

(
Ŝx2
i − Ŝ

y2
i

)
(1.20)

where D and E are the zero-field splitting parameters. For S = 1 ions and a field

applied parallel to the unique z-axis, D is defined as the energy difference between

the ms = ±1 and ms = 0 energy levels. The parameter E represents the energy

difference between the ms = +1 and ms = −1 levels [33]. From Eq. 1.20, a positive
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value of D corresponds to the ms = 0 level being the ground state and the system

is described as being easy-plane as moments prefer to align within the xy plane. A

negative D causes the ms = ±1 state to have the lowest energy (for E = 0). This

corresponds to moments that prefer to align parallel to the z-axis and the system is

known as easy-axis. A non-zero E occurs if the x and y directions are dissimilar, and

is kept positive as the assignment of the x and y axes is arbitrary for low-symmetry

environments. The constraints on D, E and the anisotropic g-factor are determined

by the spin-Hamiltonian formalism given by Eq. 1.20 and are [34, 35]:

|D| ≥ 3E,

D =
(
λ
2

) [
gz − gx+gy

2

]
,

E =
(
λ
4

)
(gx − gy) .

(1.21)

If the first constraint is not met, redefining which crystal axes correspond to the x,

y and z axes will solve the issue. The spin-orbit coupling parameter λ has a value of

λ = −454 K for free Ni2+ ions. For Ni2+ ions bound into three-dimensional lattices,

it is expected that this value will change. λ has been measured to be of the same

order of magnitude as the free value for various Ni2+ octahedra [34].

As zero-field splitting causes a preferred direction for the moments to point

in, it is also called single-ion anisotropy. The magnitudes of D and E and the sign of

D is dependent on the ligands surrounding the magnetic ion and therefore will differ

between different compounds. How the structure and composition affects the single-

ion anisotropy in the coordination complexes described in this thesis is not fully

understood. A previous extended study has attempted to describe how the single-ion

anisotropy changes in different systems containing isolated S = 1 Ni2+ ions [35–39].

One of the authors of these studies also reviewed the magnetic properties of a vast

amount of different S ≥ 1 isolated systems [34]. Data from a range of experimental

techniques were used to empirically determine the structural dependency of single-

ion anisotropy. For S = 1 Ni2+ ions in octahedral environments, it was found

that an increased elongation of the octahedron in the z-axis corresponds to an

increasingly positive D parameter. This is due to a weaker crystal field in the z

direction and leads to easy-plane anisotropy. Accordingly, an axially compressed

octahedron corresponds to a stronger crystal field in the z-direction and easy-axis

anisotropy. This will be investigated further in Chapters 3 and 4.
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1.3 Interacting moments in a magnetic field

Magnetic moments that are close enough together such that their respective wave-

functions interact undergo an exchange interaction. This is basically an electrostatic

interaction, which for two ions is given by

Ĥspin = JS1 · S2, (1.22)

where J is the the magnitude of the exchange interaction. For a system of such

interacting spins which can point in any direction, the Hamiltonian is given by

Ĥspin =
∑
〈i,j〉

JijSi · Sj , (1.23)

where 〈i, j〉 denotes a sum over unique pairs of spins with a magnitude of interaction

Jij between them. This is known as the Heisenberg model. The related models

where spins are confined to one and two dimensions are known as the Ising and

XY models respectively. This modifies the components of the spins in Eq. 1.23 by

Si,Sj → Szi , S
z
j for the Ising model and Si,Sj → Sxyi , Sxyj for the XY model. Whilst

this effect can be due to exchange anisotropy, these models can contain contributions

from single-ion anisotropy effects described in section 1.2.3.

Direct exchange occurs between electrons on neighbouring atoms that inter-

act via an exchange described by Eq. 1.23. Whilst it is possible for direct exchange

to occur in real magnetic materials, due to the high localisation of the electron

orbitals around the magnetic ions it is rarely a significant mechanism. Generally,

indirect exchange is the main method for magnetic ions to interact with each other

[40]. In the materials studied in this thesis (described later in section. 1.4.3), this

process is called superexchange. Magnetic ions are separated by non-magnetic lig-

ands. There is no direct overlap between electrons on the magnetic ions. However,

the bonding with these ligands allows the electrons to delocalise over the whole sys-

tem [41]. This accounts for a much larger kinetic energy saving compared to direct

exchange between magnetic atoms due to a bigger area for electrons to travel over.

Whilst there is also a potential energy due to electron repulsion, this is small. The

superexchange interaction is usually antiferromagnetic.

1.3.1 Ferromagnetism

A ferromagnet has a spontaneous magnetisation at low temperatures, without the

need of an applied magnetic field. This occurs when the lowest energy configuration
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is for adjacent moments to point parallel to each other. This necessitates J < 0 in

Eq. 1.23. Ferromagnetism is described phenomenologically using the Weiss model,

which uses an effective molecular field at the i’th site [42]:

Bmf = − 2

gµb

∑
j

JijSj = αM, (1.24)

to model the exchange interaction to an adjacent site j. In Eq. 1.24, α is a constant

which parametrises the strength of the molecular field and is positive for ferromag-

nets. If Eq. 1.24 is added as an extra term to the Zeeman Hamiltonaian in Eq. 1.8,

then the effective Hamiltonian can be written as

Ĥ = gµb
∑
i

Si · (B + Bmf ) . (1.25)

This allows the problem to be treated as if the system was a paramagnet. At tem-

peratures much lower than J , the parallel alignment of the spins is self-sustaining,

even in the absence of an applied magnetic field. This is known as the ferromagnetic

ordered state. As the temperature is raised, thermal fluctuations increase until a cer-

tain temperature (Tc, C stands for Curie) above which the order is destroyed. This

critical temperature is known as the ordering temperature. The phase transition

between the ferromagnetic and paramagnetic regimes is a second-order phase tran-

sition, and as such has discontinuities in heat capacity (called a lambda peak) and

the gradient of the magnetisation. The corresponding ordering peak in the gradient

of χT (T ) has been shown to be at the ordering temperature via the Fisher relation

[43]. The Weiss model modifies Eq. 1.18 so that susceptibility is proportional to

1/ (T − Tc) and

χ =
g2µ2

Bµ0S(S + 1)

3kb (T − Tc)
, (1.26)

which is called the Curie-Weiss Law.

1.3.2 Antiferromagnetism

An antiferromagnet occurs when the exchange interaction between adjacent spins is

more than zero, with J > 0. It is therefore energetically favourable for neighbouring

moments to align antiparallel with each other. A lattice of such interacting spins can

be decomposed into two interpenetrating sublattices [Fig. 1.1(a)]. The moments in

one sublattice all point in one direction whereas the moments in the other point in

the opposite direction [40]. These sublattices can be individually described using

the Weiss model analogous to the ferromagnetic case above with molecular fields B+
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Figure 1.1: (a) The ground state of an antiferromagnet is made up of two sublattices
with equal and opposite magnetisation. (b) The type of interactions within a sample
can be determined using high-temperature inverse susceptibility and Eq. 1.29. For
paramagnets the inverse susceptibility extrapolates to the origin. Ferromagnets have
a positive x-axis intercept whereas antiferromagnets have a negative one.

and B−. The magnetisation of each sublattice will have the same magnitude but

opposite sign such that the overall magnetisation will be zero in the ordered state:

B+ = −|α|M−,
B− = −|α|M+.

(1.27)

Similar to the ferromagnetic case, there is a critical temperature Tn (N stands for

Néel) above which there is no order. The Weiss model for antiferromagnetism mod-

ifies Eq. 1.26 to:

χ =
g2µ2

Bµ0S(S + 1)

3kb (T + Tn)
. (1.28)

This enables the analysis of high temperature susceptibility data to determine the

interactions within magnetic materials using the Curie-Weiss law:

χ =
g2µ2

Bµ0S(S + 1)

3kb (T − θw)
, (1.29)

where θw is the Weiss temperature [Fig. 1.1(b)]. If θw = 0 then Eq. 1.29 simplifies

to the Curie Law (Eq. 1.18) and the material is a paramagnet. If θw > 0 then
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the x-axis intercept in the inverse susceptibility is also positive and the sample is a

ferromagnet. Likewise if θw < 0 then the compound is antiferromagnetic and the

x-axis intercept is negative [44]. However, there are some caveats which need to

be taken into account. The Curie-Weiss Law is only applicable in the limit of low

fields and high temperatures. The Weiss temperature is also sometimes called the

magnetic ordering temperature, the temperature at which paramagnetic moments

fully align with the applied magnetic field. Whilst |θw| ≈ Tn,Tc for three dimensional

magnetic lattices, it is certainly not the case for lower dimensional magnetic systems

[45]. The presence of a non-zero Weiss temperature does not imply the existence of

long-range magnetic order at low temperatures. The sign of θw should still indicate

the type of interaction within the sample however, but only in the absence of terms

other than exchange and Zeeman in the Hamiltonian

Due to the two sublattices, when a magnetic field is applied to a three-

dimensional Heisenberg antiferromagnet at low temperatures, the direction of the

field is important. It is not energetically favourable for moments to align with a small

(relative to J) field applied to two sublattices of equal but opposite magnetisation

at T = 0. The energy saved by aligning one sublattice is cancelled by the cost to

align the other sublattice due to J . If a small magnetic field is applied parallel to

the direction of the spins, a small term is added or subtracted to the local field

of each sublattice, depending on the orientation of the spins. This has no effect

on the sublattice already aligned with the field as it is already saturated. It is

also not enough to overcome J and therefore the sublattice aligned antiparallel

is also unaffected and the parallel susceptibility χ|| = 0. If the field is applied

perpendicular to the spins this causes the spins to tilt and have a net magnetisation

parallel to the field, with a corresponding perpendicular susceptibility χ⊥ 6= 0. As

the temperature is increased, the perpendicular case doesn’t change as the molecular

field of both sublattices are reduced equally by thermal fluctuations. In the parallel

case, the applied field enhances the magnetisation of one sublattice but decreases the

other. This induces an increase in the susceptibility until it reaches χ⊥ at Tn [Fig.

1.2(a)]. Above the ordering temperature, the susceptibility will show paramagnetic

behaviour where the direction of the applied field is not important.

For a powdered low-dimensional system, the susceptibility data will average

to a broad peak [Fig. 1.2(b)]. This position of peak does not signify long-range

order, but is dependent on the strength of magnetic interactions between adjacent

ions. This can then be used to determine the magnitude of J . Susceptibility data of

isotropic antiferromagnetic compounds are modelled using high-temperature series
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Figure 1.2: Susceptibility of (a) a three-dimensional Heisenberg antiferromagnet for
a magnetic field applied parallel and perpendicular to the magnetisation axis and
(b) a powdered low-dimensional Heisenberg antifferomagnet

expansions of the form

χmol = C

∑
n anA

n∑
m bmA

m
, (1.30)

where

C =
g2
sµ

2
Bµ0S(S + 1)

3kbT
, (1.31)

is the Curie constant, A = (J/T ), and an, bm are coefficients which depends on the

magnetic dimensionality. This is an effective method for determining J in isotropic

antiferromagnets [46–51]. Models for more anisotropic compounds do exist [52],

but problems occur when modelling data of powdered samples [13]. This will be

discussed further in chapter 3

If a strong magnetic field is applied, such that µ0H � J , then the moments

will be fully aligned with the field. For Heisenberg and XY antiferromagnets, as

the applied magnetic field is increased, the moments will smoothly align parallel to

the field. For Heisenberg antiferromagnets, there is one sharp feature in the mag-

netisation data indicating the saturation point, whereas for XY antiferromagnets

there are two, corresponding to the saturation of moments when the field is applied

parallel to the xy plane and z-axis (see section 2.3 for more details). For Ising-like

antiferromagnets, the way in which the moments align depends on the orientation of

the field. At T = 0, for an increasing field applied perpendicular to the preferential

axis of the sublattices, the moments smoothly rotate and align with the field. How-

ever, for a field applied parallel to the direction of the sublattices, initially nothing

happens. In the weak Ising-like anisotropy case, at a critical field (discussed further

in section 2.3) the moments will “snap” into a different configuration where the
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direction of the sublattices point at an angle ±θ to the direction of the field. This

process is called a spin-flop. As the field is raised further, the moments smoothly

rotate towards the direction of the field. If there is strong Ising-like anisotropy, then

a spin-flip may occur for a field applied parallel to the easy-axis. This is where the

magnetisation of one of the sublattices suddenly reverses and the system moves to

a fully aligned state in one step.

1.4 Low-dimensional magnetism

Low-dimensional magnetism garnered interest in the early to middle 20th century

following the theoretical work of Bethe on one dimensional materials in 1931 [53],

and follow up studies on anisotropic chains by Bonner and Fisher [46]. The signifi-

cant advance in two-dimensional magnetism during this time was an exact solution

to the two-dimensional Ising problem solved by Lars Onsager in 1944 [54]. How-

ever, strong interest in low-dimensional magnetism exploded in the 1970s and 1980s,

much due to the pioneering work by David J. Thouless, J. Michael Kosterlitz (see

section 1.4.1) and F. Duncan Haldane (see section 1.4.2) for which they won the

Nobel prize for physics in 2016. Along with developments in coordination chemistry

(see section 1.4.3) in the 1980’s, this created a fertile breeding ground for experimen-

tal and further theoretical investigations of low-dimensional magnets [55]. Unlike

in three dimensions, low-dimensional magnetic materials support strong quantum

fluctuations which leads to novel quantum excitations and novel ground states [56].

These are described below.

1.4.1 Quasi-two dimensional magnetism

Much of the focus in low-dimensional magnetism in the mid-20th century was aimed

at sheets of magnetically interacting spins. Whilst the Mermin-Wagner theorem

predicts the absence of long-range order for ideal isotropic two-dimensional magnets

at T 6= 0, it says little about the ground state at T = 0 [57]. For long-range order to

develop at finite temperatures requires only a small amount of anisotropy, via either

magnetic exchange or interlayer interactions [58]. Much current work is directed

at S = 1/2 square lattice Heisenberg antiferromagnets (SLHAF) due to possible

connections to understanding high-Tc cuprate superconductors [59]. These contain

planes of S = 1/2 copper ions bridged by oxygen atoms. The Cu-O planes are

necessary for the superconducting properties. When the temperature is reduced

in SLHAF’s, the size of short-range spin correlations (also known as the spin-spin

correlation length ξ) increases exponentially and diverges at T = 0, suggesting the

14



presence of long range order.

For spins confined to point in one or two directions, the situation is different.

The two-dimensional XY model also doesn’t order at finite temperatures, but there

are two different phases within this range. The first is at high-temperatures, where

spin-spin correlations decay away exponentially. This changes to an algebraic decay

at lower temperatures and the transition between the two phases is known as the

Kosterlitz-Thouless (KT) transition, or sometimes the BKT transition (where B =

Vadim Berezinski), and is a topological phase transition. Topology describes the

properties of materials that are invariant under continuous transformations, such as

stretching or twisting. Due to quantum and thermal fluctuations destroying long

range order in two-dimensions, it was believed that there could be no phase transi-

tions in such systems. However, a phase transition does occur due to the thermal

stability of vortices that occur in two-dimensional materials. At low temperatures

the vortices form pairs, but as the temperature is increased they disengage and move

apart, becoming single. Unusually, this is a phase transition that doesn’t break any

symmetry; there is no local order parameter (such as magnetisation) that goes to

zero at a critical temperature. This is a universal theory that can be used in all kinds

of materials in two-dimensions, and even in other areas of physics, such as statisti-

cal mechanics or atomic physics. In two-dimensional S = 1/2 XY antiferromagnets

there is a predicted KT transition at Tkt = 0.3427(2)J [60].

For Ising spins on a two-dimensional lattice, there is a non-zero temperature

below which long-range order occurs throughout the lattice. This is because the

energy cost of thermally exciting a spin to flip is balanced out by the gain in entropy.

Both of these equally scale with the size of the region in which all spins are flipped.

As energy and entropy are balanced, neither have an advantage and a stable, long-

range ordered state can occur if the temperature is lowered enough.

1.4.2 Quasi-one dimensional magnetism

Similar to the two-dimensional case, long range order doesn’t occur for ideal isotropic

one-dimensional antiferromagnets at finite temperatures. However, unlike in two-

dimensions, this lack of long-range order also applies to Ising chains. Fluctuations,

both quantum and thermal, have a much stronger affect on spin chains than they do

in two-dimensions. The entropy gain of flipping one spin far outweighs the energy

cost as long-range order is destroyed by the flipping of one spin. In reality however,

there is no such thing as an ideal spin chain. Long-range order is induced via an

interchain interaction J⊥ which stabilises the ordered ground state. One interest in

pursuing theoretical and experimental studies of spin chains is to understand the
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excitations. For example, in Ising spin chains, excitations are associated with domain

walls. Once created these excitations move freely along the chain. Heisenberg spin

chains also have excitations known as spinons, which are S = 1/2 and gapless.

Therefore, they order at zero temperature. This was found to be true for all half-

integer Heisenberg spins chains.

However, large fluctuations contribute differently depending on the value of

the spin. Haldane predicted that the ground state of the one-dimensional Heisenberg

antiferromagnet with integer spin would contain nonlinear quantum fluctuations.

This creates a singlet, nonmagnetic ground state separated from excited states by

an energy gap ∆. This is known as the Haldane gap, and is a nontrivial symmetry-

protected topological phase. Spin-spin correlations have an exponential decay as the

temperature is lowered, such that there is an absence of long range order even for

T = 0. The Haldane model also holds for slightly anisotropic chains, though there

are constraints on the magnetic parameters. For isolated chains to be in the Haldane

state, calculations predict that |D|/J < 0.29(1) for Ising and D/J < 0.99(2) for XY

compounds [4]. For positive D > J , the system is driven to a quantum paramagnet

(QPM) phase where single-ion anisotropy is dominant. The QPM phase also doesn’t

order at finite temperatures due to the dominant single-ion anisotropy term forcing

the spins into the non-magnetic ms = 0 state [61]. It differs to the Haldane phase

in that the application of a magnetic field leads to a field induced quantum phase

transition into a canted XY antiferromagnetic phase [4].

In non-Heisenberg Haldane chains, the size of the gap is dependent on the

direction of the applied field and the magnitude of the single-ion anisotropy D. In

zero field this relationship is [62]

∆z = ∆0 + 1.41D,

∆xy = ∆0 − 0.57D,

(1.32)

for systems with uniaxial symmetry, where ∆0 = 0.41191J is the size of the gap for

isotropic systems [51]. In an applied field, a Zeeman term is introduced to account

for the energy level splitting of the excited triplet state, which will close the gap.

In real Haldane systems, there is also an interchain interaction (J⊥). If J⊥ is large

enough, the system becomes too three-dimensional, which quenches the Haldane

gap. The phase diagram for S = 1 antiferromagnetic chains is shown in Fig. 1.3(a).

Experimentally, the Haldane phase can be observed in the exponential decay

of susceptibility [51, 63, 64] and zero-field magnetic heat capacity data [65] as T → 0.

In an applied field, the excited triplet state splits via the Zeeman mechanism. This
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Figure 1.3: (a) Theoretical phase-diagram of the S = 1 antiferromagnetic chain
taken from Ref. [4]. The red circles and blue squares represent the quantum Monte-
Carlo calculated phase boundaries. The dotted lines are guides to the eye. The cross
hatched symbols represent the estimated positions of some Haldane compounds from
the reported D and J ′ ≡ J⊥ values [5–10]. (b) Representation of the valence bond
solid model in spin-1 chains. The unshaded circles represent spin-1 sites which
are split into two symmetric S = 1/2 moments (purple circles), with each S =
1/2 moment interacting with an 1/2 moment on an adjacent site (purple line).
The moments at the end of finite chains (blue arrows) are unpaired and act as
paramagnets for long chains

closes the Haldane gap at field gµbµ0Hc1 = ∆. For a Haldane chain at very low

temperatures in the region H < Hc, the magnetisation is very small due to the spins

occupying the nonmagnetic ground state [66–70]. Above Hc1, the ground state be-

comes magnetic and the magnetisation rises approximately linearly until saturation
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at gµbµ0Hsat = SnJ = 4J (n = number of magnetic exchange interactions with

neighbouring ions, S = 1 in this thesis). Field induced long range order develops for

H > Hc, which has been observed in heat capacity measurements of the Haldane

chains SrNi2V2O8 [70] and NDMAP [6, 71, 72].

The valance bond solid (VBS) state is a special case of the AKLT (Affleck-

Kennedy-Lieb-Tasaki) state, and occurs for periodic chains. In the VBS state each

S = 1 moment is made up of a combination of two symmetric S = 1/2 spins.

An S = 1/2 spin on one site forms a singlet bond with an S = 1/2 spin on an

adjacent site [Fig. 1.3(b)]. The VBS state occurs in Haldane spin-chains [4]. Hence

the end of S = 1 Heisenberg antiferromagnetic chains in the Haldane phase are

S = 1/2 moments, offering exciting ways to probe the Haldane phase by introducing

impurities to sever the chains. This is predicted to have dramatic effects on the low-

energy excitations [73], which has been studied by doping the S = 1 moments in

Haldane chains with nonmagnetic Zn2+ [74] or Mg2+ [75] ions and S = 1/2 Cu2+

ions [76]. When Haldane chains are doped in this way, two free S = 1/2 moments are

produced either side of the impurity [77]. For short chains, it was found that S = 1/2

moments couple along the chains to form S = 1 triplets [74, 78, 79]. In longer chains,

they act as free paramagnets. This effect can be also observed in powders as the

paramagnetism dominates magnetisation and electron spin resonance data at low

temperatures [80, 81]. These end chain effects are further experimental evidence

that an integer spin chain is in the Haldane phase.

1.4.3 Coordination polymers

Recently, coordination polymers have been used to great effect in the experimental

studies of low-dimensional magnetism. Coordination polymers are neutral com-

pounds made up of arrays of metal ions linked by a variety of coordinated organic

and inorganic ligands [82]. These coordinated linkages are not constrained to three

dimensions. Other types of bonding, such as hydrogen bonding or Van der Waals

forces, may also be present to keep atoms and molecules linked in two or one direc-

tions. These are technically called one or two dimensional coordination polymers

[83]. In this thesis the umbrella term ”coordination polymer” will include all low

dimensional polymers. Fully uncoordinated molecules may be required to counter

the charge of the metal ion to achieve charge neutrality throughout the compound.

Coordination polymers were accidentally discovered at the start of 18th century

by the German colourmaker Diesbach. Diesbach was trying to make the pigment

cochineal red lake but due to impurities in the starting ingredients ended up with

a deep blue, called Prussian Blue [84]. The formula (Fe4[Fe(CN)6]3 · xH2O) and
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structure of Prussian Blue wasn’t discovered until the late 1970’s [85, 86].

The advantages of this type of material is that the constituent parts can be

interchanged almost at will. This can create a near limitless amount of compounds

with different structures and combinations of metal ions and ligands. The effect

that structure and composition has on the magnetic properties can be investigated

by studying closely related polymers via a variety of experimental techniques. This

can be done in different ways. An example is the NiX2(pyz)2 family (Cl, Br and

I, pyz = pyrazine C4H4N2) [1]. NiX2(pyz)2 is a quasi-two dimensional antiferro-

magnet with magnetic interactions through Ni-pyz planes. The halide ions bridge

between nickel ions in adjacent planes. Whilst the intraplane magnetic interaction J

remain relatively unchanged, the magnitude of the interplane exchange J⊥ increases

as X moves down group 7 of the periodic table such that J⊥ � J for X=Cl and

J⊥ > J for X=I. This indicates that the strength of magnetic interactions can be

directly controlled by composition of the compound. Similarly, by exchanging lig-

ands the dimensionality of the magnetic system can be altered [87]. This has been

achieved using [Cu(pyz)(pyO)2(H2O)2](PF6)2 and [Cu(pyz)2(pyO)2](PF6)2 (pyO

= pyradine-N-oxide, C5H5NO). [Cu(pyz)2(pyO)2](PF6)2 is made up of planes of

Cu2+ ions bridged by pyz molecules which mediate magnetic interactions. The pyO

molecules are non-bridging and inhibit the exchange so that [Cu(pyz)2(pyO)2](PF6)2

is a quasi-two dimensional antiferromagnet. By changing the relative amounts of

the starting ingredients, a powdered sample of [Cu(pyz)(pyO)2(H2O)2](PF6)2 was

grown. Two non-bridging water molecules replaced a bridging pyz molecule in the

unit cell creating a quasi-one dimensional antiferromagnet [88]. The effect structure

and composition has on the single-ion anisotropy of S ≥ 1 coordination polymers

can be investigated by changing any ligand or magnetic ion before the production

stage and then characterising the magnetic properties of the resultant compound.

Coordination polymers have already been shown to be highly suited to large-scale

investigations into this area [34].

1.5 Thesis motivation

The theoretical work on low-dimensional magnetism and advances in coordina-

tion chemistry has led to a vast amount of experimental investigations into low-

dimensional quantum magnetism in the last few decades. This is partly driven by

possible applications in data storage, catalysis and quantum computing amongst

others [88–92]. Coordination polymers are also highly suited to experimentally

exploring exotic low-dimensional phases due to the ability to tune the magnetic
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properties towards quantum critical points [1, 13, 61, 87, 93–101]. The ability to be

able to understand the structural and compositional dependency of the magnetic

properties of coordination polymers is therefore of major interest to both chemists

and physicists alike. To be able to produce bespoke magnetic systems for physical

applications or experimental tests of theoretical predictions is the ultimate goal of

research in this area. There have been a large number of experimental studies into

the magnetism of spin half coordination polymers in recent years, in which the role

of structure and composition has on the magnetic properties has been reasonably

well understood [92, 96, 102–104]. This allows the use of S = 1/2 systems to more

efficiently explore exotic states experimentally, such as Bose-Einstein condensates

[105–107] or quantum spin liquids [108].

However, this is not the case for S ≥ 1 magnetic compounds due to the more

complex ground state that these systems exhibit. There has been progress in ex-

plaining the single-ion properties of these high-spin systems, but some compounds

containing coordinated halide ions do not agree with theoretical predictions [34].

Explicit investigations into understanding the single-ion anisotropy parameters of

S ≥ 1 compounds containing exchange-coupled spins are also quite rare. This is

because the competition between single-ion and exchange effects causes immense

difficulties when characterising the magnetic properties of these materials. This is

exacerbated by the lack of single crystals to make measurements on. The powdered

nature of the sample scrambles the crystal axis with respect to the applied magnetic

field, increasing the features present in magnetic measurements. Features may also

have contributions from both single-ion properties and magnetic exchange, which

can be difficult to untangle [13]. Currently, it requires a lot of time, expense and

effort to characterise these systems. In this thesis, I will attempt to produce a

method with which the characterisation of powdered exchange coupled S = 1 com-

pounds can be performed using commercially available lab based equipment. I will

then use this method to characterise the properties of a family of S = 1 chains to

determine the effect composition and the structural parameters have on single-ion

anisotropy properties and strength of magnetic exchange interactions. One of the

compounds in this family is a near-ideal Haldane chain whose properties make it

ripe for further study. Lastly, I will characterise a bond-disordered S = 1/2 copper

based quasi two-dimensional antiferromagnet, to experimentally test the validity of

two theoretical predictions [109, 110].
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Chapter 2

Experimental Techniques

2.1 Magnetometry

2.1.1 Quasi-static measurements

Magnetometry measurements were performed using a Superconducting Quantum

Interference Device (SQUID), which is an insert into a Quantum Design Magnetic

Property Measurement System (MPMS) [11]. The MPMS can precisely control the

temperature of the sample in the range 1.8 ≤ T ≤ 400 K. The lower range can be

extended down to ≈ 0.5 K with the use of a iQuantum Helium-3 (3He) insert. A

superconducting magnet is used to generate fields up to 7 T. Due to the sensitivity

of the SQUID to fluctuations in magnetic fields, a magnetic shield is required to keep

the magnetic field in the SQUID stable. Linear magnetic susceptibility as a function

of temperature χ(T ) = M/H and magnetisation as a function of field M(H) can

be measured in this set-up. The sample is loaded into a gelatin capsule, which is

attached to a nonmagnetic sample holder at the end of a rigid rod. This then moves

through a superconducting detection coil, made up of a single piece of supercon-

ducting wire wound into a set of 3 coils as shown in Fig. 2.1. In this configuration

the upper and lower coil are wound in a clockwise direction and the middle coil is

wound in an anti-clockwise direction. This is to reduce noise in the detection circuit

caused by fluctuations in the magnetic field and also minimises background drifts

in the SQUID caused by relaxation in the magnetic field of the superconducting

magnet. As the sample moves through the coils, the local changes in magnetic flux

density produced by the dipole field of the sample is measured. This change induces

a current in the superconducting wire which then inductively couples to the SQUID

sensor producing an output voltage which is directly proportional to the current

flowing through the detection coil. This acts as a highly sensitive current to voltage
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Figure 2.1: Figure showing the superconducting detection coil in the MPMS. The
labels −1 and +1 correspond to windings in the clockwise and anti-clockwise direc-
tions respectively [11]. The square represents the sample.

converter. The voltage as a function of position of a sample with a known magnetic

moment is used to calibrate the system. The output voltage then provides a direct

measurement of the sample’s magnetic moment. The SQUID magnetometer is sen-

sitive to very small magnetic moments, enabling characterisation of small samples

or materials with a weak longitudinal magnetism.

2.1.2 Pulsed-field measurements

Pulsed-field magnetisation measurements were performed at the National High Mag-

netic Field Laboratory in Los Alamos, USA. Fields of up to 65 T with typical rise

times ≈ 10 ms were used. Powdered samples or single crystals were mounted in

1.3 mm diameter polychlorotrifluoroethylene [PCTFE = (C2ClF3)n] ampules (inner

diameter 1.0 mm) which are attached to a probe containing a 1500-turn, 1.5 mm

bore, 1.5 mm long compensated-coil susceptometer, constructed from 50 gauge high-

purity copper wire [96]. The ampules can be moved into and out of the susceptome-

ter. When the sample is within the coil and the field pulsed the voltage induced in

the coil is proportional to the rate of change of magnetisation with time (dM/dt).

The total magnetisation is obtained by numerical integration of the signal with re-

spect to time. A subtraction of the integrated signal recorded using an empty coil

(sample moved out) under the same conditions is required to calculate the magneti-

sation of the sample [96]. The magnetic field is measured via the signal induced
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Figure 2.2: Antiferromagnetically coupled spin−1/2 moments fully saturate at HC

in zero-temperature (red) causing a step function in the differential susceptibility
(orange). Finite temperatures (blue) smooths the saturation point such that it
can be difficult to obtain HC in the differential susceptibility (cyan). However, by
differentiating again, a more accurate HC can be obtained as the position of the
trough in d2M/dH2 (green).

within a coaxial 10-turn coil and calibrated via observation of de Haas-van Alphen

oscillations arising from the copper coils of the susceptometer [96]. The suscep-

tometer is placed inside a 3He cryostat, which can attain temperatures as low as

500 mK. Sometimes, due to constant offsets in the signal amplification circuit, the

zero-field dM/dt is not measured to be zero. This induces a linear term into the

magnetisation when the signal is integrated and has the form Mlinear = αB. The

constant α is obtained by fitting the magnetisation at fields above the saturation

field to a linear fit. This term is then subtracted to give the magnetisation of the

sample.

Many Heisenberg antiferromagnets show a well defined saturation transition

at T = 0 (Fig. 2.2). Non-zero temperatures act to smooth the saturation field Hc.

Anisotropy in a powdered sample would also affect the saturation point in this way.

This makes it more difficult to determine the point at which the moments would
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Figure 2.3: Diagram for a thermal-relaxation calorimeter. The powdered sample is
pressed into a pellet and stuck to the platform using Apiezon N grease to ensure
good thermal conductivity. Gold wires thermally link the platform to a heat sink of
temperature T0 and make an electrical connection to power the temperature sensor
and heater.

saturate at zero temperature. A previous study has used the midpoint of the drop

in dM/dH [1]. The exact midpoint can be difficult to determine, especially if the

signal is small or the data is noisy. However, an accurate value of Hc can be found

from the position of the minimum in d2M/dH2. This corresponds to the point of

highest gradient in dM/dH and is typically close to the midpoint of the drop.

2.2 Heat capacity

Heat capacity measurements were made using a Quantum Design Physical Property

Measurement System (PPMS) [111]. It contains a superconducting magnet that

can reach fields of 9 T and a cryostat which can lower the temperature to 1.8 K.

Temperatures down to ≈ 0.5 K can be obtained by using a 3He insert. The PPMS

determines the specific heat capacity of a sample by measuring the thermal response

of the sample to a change in temperature. Powdered samples are pressed into pellets

and attached to the sample platform using Apiezon N grease (Fig. 2.3). The grease

not only provides a good thermal connection between sample and platform but

also as a glue to keep the sample in place. The platform contains a small heater

and the temperature is determined via a bare Cernox sensor. Wires thermally link
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the platform to a heat sink, and also make an electrical connection to power the

temperature sensor and the heater. A heat pulse is used to increase the temperature

of the platform and therefore the sample. A temperature increase of ≈ 1% of that

of the thermal bath is used. The PPMS measures the platform temperature as the

sample and platform cools back to the level of the thermal bath. A two-tau fitting

method is used to determine the heat capacity of the sample [111, 112]. The first

time constant, τ1, is used to model the temperature difference between the sample

holder and the heat sink. The second time constant, τ2, is used to describe the

temperature difference between the sample and the platform. During heat capacity

measurements, τ2 is only necessary if there is poor thermal connection between the

sample and the sample holder.

Heat capacity measurements of the coordination polymers in this thesis con-

tain two contributions. Low temperature data is dominated by the magnetic heat

capacity (Cmag). At high temperatures phonons are dominant (Clatt). Phonons are

quantised lattice waves that describe vibrations of the lattice via normal modes.

There are two models that are commonly used to describe vibrations in solids; the

Einstein model and the Debye model. The former assumes that all vibrational modes

have the same frequency w and is prominent at high-temperature. The Debye model

assumes a distribution of frequencies and dominates over the Einstein model at low

temperatures [24]. These models are field independent. To obtain the magnetic heat

capacity, it is necessary to subtract off the phonon contribution. This is performed

by modelling the high temperature zero-field data with

Clatt =
3Ad

x3
d

∫ xd

0

x4ex

(ex − 1)2 +
n∑
i=1

Aei
θ2
ei

T 2

e(θei/T )[
e(θei/T ) − 1

]2 , (2.1)

where x = ~ω/kBT and there are n Einstein modes. The amplitude A and tempera-

ture θ are fitted, where D and E denote the Debye and Einstein modes respectively.

2.3 Analysing magnetisation and heat capacity data of

powdered samples

Whilst measurements on single crystals are ideal for determining the magnetic prop-

erties of anisotropic quantum magnets, single crystals sufficiently large enough are

not always readily available. Commonly, new quantum magnets are only available

as powders. The mixing of different crystal directions with respect to the applied

field causes a loss of information from the magnetic or physical response. However,

some details can be obtained from measurements on powders. Comparing the re-
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Figure 2.4: Ground state energy level diagrams for (a) easy-axis anisotropy and
(b) easy-plane anisotropy with E = 0. (c) Simulated magnetisation of a powdered
compound containing isolated S = 1 ions with easy-plane single-ion anisotropy and
E = 0. A bump in dM/dH and a derivative shape in d2M/dH2 are expected once
the applied field causes a ground state energy-level crossing.

sults of experiments to simulations enables an accurate analysis of the measured

compound. In this section, the effect powder averaging has on bulk magnetometry

and heat capacity measurements is presented. A portion of this work has already

been reported [13, 101, 113], but is described again due to its importance as a tool

in the analysis of the compounds in this thesis.

For isolated S = 1 moments with easy-plane anisotropy, when the applied

field is parallel to the hard axis there is a level crossing between the mz = 0 zero-field

ground-state and the mz = 1 level [Fig. 2.4(b)] at the critical field Hc, where:

gµbµ0Hc =
√
D2 − E2. (2.2)
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This corresponds to a sharp increase in the single crystal magnetization, and a peak

in the differential susceptibility dMz/dH. For a powder, this feature is reduced to

a small bump [101]. The simulated differential susceptibility for isolated S = 1 ions

with easy-plane anisotropy (D >0), and E = 0, is plotted in dimensionless units

in Fig. 2.4(c). The peak in dM/dH can be seen to correspond to the midpoint

of the peak-derivative shape in the d2M/dH2 data. By simulating the differential

susceptibility at different temperatures, it is found that the peak indicating the

level crossing at H = Hc is only observed once the temperature is lowered below

approximately 0.12D [13]. This is because the thermal occupation of excited states

obscures the crossing of the ground-state at high-temperatures.

Simulations of the magnetisation of ideal low-dimensional S = 1 AFMs were

made in MATLAB, using a mean-field semi-classical approach [13]. For the easy-

plane case, two critical fields are expected for nJ < D. The first is when moments

saturate due to an applied field parallel to the xy-plane, and assuming J⊥ � J

occurs at:

gµbµ0Hc1 = 2SnJ, (2.3)

where n = number of nearest interacting neighbours. The second is is when moments

saturate for fields parallel to the x-axis and occurs at

gµbµ0Hsat = 2(nJ +D)S. (2.4)

In the easy-axis description, the interpretation of the upper-critical field is

analogous to the easy-plane case and occurs for fields perpendicular to z-axis and

occurs when:

gµbµ0Hsat = 2(nJ + |D|)S. (2.5)

For fields parallel to the z-axis, two transitions can occur. The first is a spin-

flop transition at which point the collinear antiferromagnetically ordered moments,

which are aligned to the easy axis in zero-field, discontinuously jump to a canted

phase in which the z components are aligned to the field whilst the remaining xy

component is antiferromagnetically ordered. This occurs at H = Hsf [114]

gµbµ0Hsf = 2S
√
|D|(nJ − |D|), (2.6)

and necessitates nJ > D to be observed. As the field continues to rise further, the

moments smoothly approach saturation at Hc1 < Hsat, where
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Figure 2.5: Simulations of Cmag vs. T and Cmag/T vs. T of powdered S = 1 (c),(e)
easy-axis and (d),(f) easy-plane compounds with E = 0.

gµbµ0Hc1 = 2(nJ − |D|)S. (2.7)

Here, Hc1 contains a contribution from D as it can only be reached through the

spin-flop phase which contains a non-zero xy-component of the spins. For powdered

samples a feature is expected at Hc1 and Hsat for both easy-plane and easy-axis

cases. This analysis gives two methods to determine the sign of D. The first is that

a spin-flop will only be observed in the case of a uni-axial system. The second is that

the separation of Hc1 and Hsat has a different dependence on D for the easy-axis

and easy-plane cases.

The heat capacity of a system of isolated S = 1 ions with a D only Hamilto-
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Figure 2.6: (a) Simulated position temperature of the Schottky anomaly vs. applied
field for powdered S = 1 compounds with easy-plane and easy-axis anisotropy with
E = 0. (b) The local gradient versus the zero field intercept of the data in panel
(a).

nian in powdered form was simulated using MATLAB [113]. The powder averaging

is modelled by considering 20 different applied fields with respect to the z-axis as de-

fined by D. It was assumed that E = 0 in the simulations. For the case of easy-axis

anisotropy (D < 0), the Ni2+ ions have a bistable ground-state in zero-field [Fig.

2.5(a)]. The simulated heat capacity [Fig. 2.5(a)] shows a single broad maximum

at a temperature set by D in zero-field. In an applied field, the degeneracy of the

ground-state is lifted, resulting in a small second peak in the specific heat emerging

at low temperatures due to the depopulation of the upper level of the low-energy

doublet [Fig. 2.4(a)]. The two peaks merge and move to higher temperatures as

the applied field is increased further. For easy-plane anisotropy (D > 0) the system

always has a unique ground state, and in an applied-field the single broad maximum

in Cmag moves continuously to higher temperatures [Fig. 2.5(b)].

To extract the magnetic parameters from heat capacity measurements the

field-dependence of the Schottky anomaly Tmax is plotted in dimensionless units

[Fig. 2.6(a)]. In the easy-axis case, only the broad feature present in zero-field is

tracked. The field dependence of Tmax [Fig. 2.6(a)] is parametrised by taking the

gradient of the data in Fig. 2.6(a) as a function of field. This can be written as:

kbTmax

|D|
= γ + δ

(
gµ0µbH

|D|

)
, (2.8)
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where there are two field-dependent parameters: (i) δ, the local gradient; and (ii) γ,

the zero-field intercept. Multiplying Eq. 2.8 by D suggests the intercept of a linear

fit to Tmax vs. gµ0µbH is equal to γD. The pre-factor γ can be uniquely determined

for a particular sign of D by using the measurement of δ and Fig. 2.6(b). The sign

of D is apparent from the field dependence of the Schottky peaks.

2.4 Electron spin resonance

High-field, high-frequency Electron spin resonance (ESR) spectra of powdered sam-

ples were recorded on a home-built spectrometer at the EMR facility, National High

Magnetic Field Laboratory, Tallahassee, Florida, USA. Microwave frequencies in

the range 52 ≤ ν ≤ 626 GHz at temperatures ranging from ≈ 3 K to 80 K were

used in the measurement. The instrument is a transmission-type device and uses

no resonance cavity. Powdered samples are loaded into thin teflon vessels and low-

ered into the cryostat. The microwaves were generated by a phase-locked Virginia

Diodes source, generating frequency of 13 ± 1 GHz, and equipped with a cascade of

frequency multipliers to generate higher harmonic frequencies. The resultant signal

was detected using a cold bolometer. A superconducting magnet capable of reaching

fields up to 15 T was employed.

ESR is an experimental technique that is highly suited to determining the

difference between ground-state and excited energy levels in condensed matter [27].

Using a combination of frequency dependent and temperature dependent studies,

the sign and magnitude of single-ion anisotropy (see section 1.2.3) parameters can

be obtained [21]. In ESR measurements, microwave radiation (109 − 1011 GHz) is

supplied to a sample in a magnetic field. The magnetic field splits the energy levels

via the Zeeman mechanism [115]. If the injected photon has the same energy (ν) as

the difference between the energy levels (∆E), then the photon will be absorbed by

the spin. This induces a transition of the spin to a higher energy state:

∆E = hν = gµbµ0H∆ms, (2.9)

where ∆ms = ±1 is the allowed change in the spin state. This causes a peak in the

ESR spectrum. At low fields, energy-level mixing occurs. This allows transitions

between spin states with ∆ms = ±2. This transition is called the half-field transition

as it occurs at approximately half the mean-field of the ∆ms = ±1 transitions. As

both ν and ∆E can be changed (the latter tuned using different µ0H), there are

two different methods to obtaining spectra; by scanning the frequency or the field.

Because of difficulty in scanning microwave frequencies and the common use of
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Figure 2.7: Resonances observed in ESR spectra of powdered samples with (a) the
Hamiltonian in Eq. 2.10 (D 6= 0 and E 6= 0) and (b) uniaxial symmetry (D 6= 0
and E = 0). Adapted from Ref. [12].

resonant cavities for signal detection, most ESR spectrometers keep the frequency

constant and change the field.

In this thesis, ESR measurements have been used to determine the single-ion

parameters of S = 1 powdered compounds. Spectra of these samples can exhibit up

to nine resonances, three for each crystal axis that field can be applied along. The

position of each of these resonances can be calculated by exact diagonalisation of

the S = 1 Hamiltonian:

Ĥ = D
∑
i

Ŝz2
i + E

∑
i

(
Ŝx2
i − Ŝ

y2
i

)
+ µbµ0

∑
i

g ·H · Ŝ i. (2.10)

This yields, for fields parallel (||) to the x,y and z axes, the expected resonance field

for a particular frequency ν and unknown single-ion anisotropy parameters D and
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E [12]:

∆ms = ±1 transitions

µ0H || x− axis : µ0H = 1
gxµb

√[
hν ± 3

2

(
1
3D − E

)]2 − 1
4 (D + E)2.

µ0H || y − axis : µ0H = 1
gyµb

√[
hν ± 3

2

(
1
3D + E

)]2 − 1
4 (D − E)2.

µ0H || z − axis : µ0H = 1
gzµb

√
(hν ±D)2 − E2.

∆ms = ±2 transitions

µ0H || x− axis : µ0H = 1
2gxµb

√
(hν)2 − (D + E)2.

µ0H || y − axis : µ0H = 1
2gyµb

√
(hν)2 − (D − E)2.

µ0H || z − axis : µ0H = 1
2gzµb

√
(hν)2 − 4E2.

(2.11)

Representative first derivative of the transmission spectra for an S = 1 pow-

dered sample are presented in Fig. 2.7 showing the expected shapes of the resonance

peaks with components of the spin state with ∆ms = ±1. The first derivative is

commonly used for convenience as the position of the resonances can be observed

more easily [116]. For low symmetry, the y and z transitions (field applied parallel

to the y and z axis) are peak shapes, whereas the x transition are peak derivative

shapes. For uniaxial symmetry (E = 0), the z transition is a peak shape and the

xy transition is a peak derivative shape. Due to the large amount of resonances

that may occur during a measurement, it is necessary to label them appropriately.

The labels for this thesis are presented in Fig. 2.7 and Fig. 2.8. For a field applied

parallel to the z axis, the half-field transition is labelled ζ, the low-field is Ψ and

high-field is ε. For xy transitions, the half-field is labelled α, the low-field is β and

the high-field is γ. If there is a finite E term, then the subscripts x and y will be

used to distinguish between the two directions for the α, β and γ transitions. In

an ESR measurement of a powdered sample, ESR spectra at different frequencies

are made. All the observed transitions (with known field and frequency values)

were then fitted to the simultaneous equations in Eq. 2.11 to obtain the single-ion
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Figure 2.8: Ground state energy level diagram of a D-only S = 1 magnetic ion
with easy-plane anisotropy which shows the labelling of the transitions in ESR
measurements in this project. The field is applied parallel to (a) the z-axis and (b)
xy plane. In the presence of an E term in the Hamiltonian, the xy energy-levels
split and α, β and γ resonances will be labelled with x and y subscripts depending
on the transition they refer to.

anisotropy parameters and intrinsic g-tensor. Further details of the fitting process

can be found in Ref. [30].

It is not possible to obtain the sign of D for powdered S = 1 compounds

from fitting frequency-dependent ESR data in this manner [12, 116]. This is because

the positions of ESR transitions do not change between easy-plane and easy-axis

anisotropy. However it is possible to determine the sign of D from observing how

the intensities of the resonance peaks changes as the temperature is varied. At very

low temperatures, most of the spins occupy the ground state. A transition from

this state to an excited state will have a very high intensity. A transition between

two excited states will have a very low intensity due to the low occupancy of these

energy levels. As the temperature increases, the transition from the ground state

will decrease in intensity as spins increasingly occupy the higher energy levels. Tran-

sitions between the excited levels will therefore have larger intensities. This can be

used to determine the sign of D as the ground state will be different for positive and

negative D. For example, the low-field xy (β) transition in Fig. 2.8 is between the

ground state ms = −1 and excited ms = 0 level for D > 0. At low temperatures

it will have a much higher intensity than the high-field xy (γ) transition which is

between two excited states. For easy-axis anisotropy, these change. The γ resonance

is due to the transition between the ground state ms = −1 and excited ms = 0 level

whilst the β transition is now between the excited ms = 0 and ms = +1 levels. The

γ resonance will have a much higher intensity than the β transition at low temper-

atures. Hence, there are two methods to determine the sign of D. The first is the

difference in intensity between low and high-field resonances at a given temperature

due to transitions with the field aligned along one crystal axes. However, due to the
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large magnitudes of D in the compounds in this project, the high-field transitions

are often out of the field/frequency range of most spectrometers. In this case the

second method can be used: by measuring ESR spectra with the same frequency at

different temperature the sign of D can be determined by whether the intensity of

one particular resonance increases or decreases.

2.5 Muon-spin spectroscopy

µ-SR stands for muon spin resonance. For low-dimensional quantum magnets,

µ−SR has been shown to be sensitive to transitions to long-range order [88, 95–

97, 104, 117, 118]. Single crystal and polycrystalline samples were measured using

the HIFI spectrometer at ISIS, Rutherford Appleton Laboratory (UK) and the LTF

spectrometer at sµ+s, Paul Scherrer Institut (Switzerland). In both cases the sam-

ples were mounted onto a silver backing plate inside the cryostat using Apiezon

vacuum grease. The muons at both facilities are created by smashing high energy

protons into a carbon target. When a proton collides with a nucleus, charged pions

are created. These have a lifetime of 26 ns and decay into a muon and an appropriate

neutrino. For stationary pions that decay, the muons that are produced have a rel-

atively low velocity. This allows time for muons to be deposited into the measured

sample instead of passing straight through. Another effect of the decay of static

pions is that the emerging muons are spin polarised. The pion has no spin, and

the neutrino has spin antiparallel to its momentum. To conserve momentum, the

muon must also have spin antiparallel to its momentum. Spin-polarised µ+ ions are

then implanted in a sample such that the muons occupy interstitial positions in the

crystal lattice [18]. The population of muons then decreases on the time-scale set by

their 2.2 µs mean-lifetime. By-products of the muon decay are positrons, which are

preferentially emitted parallel to the instantaneous direction of the µ+ polarisation

at the decay event. Two scintillators, positioned in the forward (F) and backward

(B) positions relative to the µ+-beam direction, record the number of positrons as

a function of time [Ni(t)i =F, B] during an experiment. The asymmetry, A(t),

parametrises the preferred direction of positron emission via

A(t) =
NF (t)− αNB(t)

NF (t) + αNB(t)
(2.12)

where α is an experimental calibration constant accounting for differences in the

detectors.

The asymmetry is proportional to the muon polarisation along the beam

direction, pz(t). Muons coherently precess about the local field at the interstitial
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sites (B) with an angular frequency γµB, where γµ is the gyromagnetic ratio for

muons. If the direction of B with respect to the initial muon polarization direction

is random, then averaging over all angles, 〈pz(t)〉 varies as [18]:

〈pz(t)〉 =
1

3
+

2

3
cos (γµ|B|t) . (2.13)

The asymmetry is therefore sensitive to two features which signal the onset

of long-range order: an oscillatory term given by the coherent precession of ≈ 2/3 of

the implanted muons, which initially had a polarization perpendicular to the local

direction of the field at the muon site; and a time-independent ”1/3-baseline” from

the remaining muons whose polarization was initially along the field direction.

If the strength of the magnetic field at each muon site is taken from a Gaus-

sian distribution of width ∆/γµ centred around zero, then averaging over this dis-

tribution gives

〈pz(t)〉 =
1

3
+

2

3
e−∆2t2/2

(
1−∆2t2

)
. (2.14)

This is the Kubo-Toyabe model which describes the evolution of the asymmetry

function in a paramagnet, where individual moments and therefore the internal

magnetic field point in random directions throughout the sample [119]. On the

other hand, a sample exhibiting long-range order contains a uniform and static

internal field. The implanted muons will precess at one particular frequency if they

are injected into the same site in the unit cell each time. This causes oscillations in

A(t). For muons settling in different sites which have a different magnitude of the

internal field, the asymmetry will have the form:

A(t) =
n∑
i=1

Ai(0)
[
pie
−(λit) cos (2πνit)

]
(2.15)

where there are n oscillatory components with frequency νi, relaxing component λi

and initial asymmetry Ai(0). The temperature dependence of the frequencies of the

oscillation can be used to determine the ordering temperature.

2.6 Scattering techniques

X-ray and neutron scattering in condensed matter occur due to different interac-

tions within a sample. X-rays consist of oscillating electric and magnetic fields and

therefore interact with the electrons electrons surrounding each atom. X-rays also

have a similar wavelength to typical interplanar spacings in coordinations polymers,
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Figure 2.9: (a) Diagram of a generic unit cell with crystal axes a, b and c, and
angles between them α, β and γ labelled. (b) Elastic scattering vector diagram
with |ki| = |kf | through an angle of 2θ.

and therefore scatter off these planes. This makes x-rays highly suited to deter-

mining the unit cell and lattice constants [Fig. 2.9(a)]. Neutrons on the other hand

are charge neutral but interact with nuclei through the strong force. Neutrons also

have a magnetic moment. This allows it to interact via a spin-based dipole-dipole

interaction with unpaired electrons. Both of these interactions in tandem can be

used to study the unit cell and the ground state magnetic structure of a compound.

Elastic neutron scattering measurements in this project were made using the

WISH instrument at the ISIS facility, Rutherford Appleton Laboratory (UK). WISH

is a long wavelength diffractometer designed for powder diffraction at long d-spacing.

At ISIS, high energy protons are directed at a tantalum target. When a proton

collides with a nucleus in the target, it produces an intranuclear cascade which raises

the energy level of the nuclei. To release energy, the nuclei evaporate nucleons. Most

of these are neutrons, some of which leave the target and are directed through a

100 K solid methane moderator. This slows down the neutron to allow interactions

within the sample. The scattered neutron is then detected using pixellated 3He

detectors covering a scattering angle in the range of 10◦ ≤ θ ≤ 170◦

The scattering of an x-ray photon or neutron is characterised by the resultant

change in momentum P and energy E. A particle incident with wavevector ki

and angular frequency wi which scatters inside of a sample emerges with a final

wavevector kf and angular frequency wf . The momentum transfer is expressed as

P = ~ki − ~kf = ~Q, (2.16)
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and energy transfer

E = ~w (2.17)

where ~ = h/2π is the Planck constant and w = wi−wf . In this thesis, only elastic

scattering is used. This means that there is no exchange of energy between the

incident photon/neutron and the sample and therefore:

E = w = 0. (2.18)

Due to Eq. 2.18, the magnitude of the wavevector and therefore the wavelength is

unchanged on scattering

|ki| = |kf | =
2π

λ
, (2.19)

which holds for both neutrons and x-ray photons. The triangle represented by Eq.

2.19 is isosceles (Fig. 2.9) and therefore

|Q| = 4πsinθ

λ
. (2.20)

This can be related to the wavevector transfer from X-rays or neutrons incident onto

a vast array of parallel atomic planes a distance d apart:

|Q| = 2πN

d
=

4πsinθ

λ
, (2.21)

yielding Bragg’s law

Nλ = 2dsinθ (2.22)

where N denotes the order of the reflections with respect to the straight through

beam (N = 0). When applied to a compound in powdered form, a large amount of

Bragg peaks with different intensities will appear in the diffraction pattern which

correspond to the many atomic planes with different d-spacings and orientations.

By fitting these peaks, the structure of the sample can be obtained. In the analysis

of elastic neutron scattering measurements on a powdered sample in this thesis,

there are overlapping peaks with slightly different d-spacings. This can make it

difficult to fit as it can be hard to determine the position, lineshape and linewidth

of each individual peak. However, prior structural information gained from x-ray

measurements can be used as a starting point. The x-ray structural parameters can

then be refined to obtain the neutron structural parameters. This is known as the

LeBail method [120].
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Chapter 3

Determining the magnetic

properties of powdered Ni2+

complexes

3.1 Introduction

Low-dimensional S = 1 quantum magnets have been used as the basis of many

experimental studies into novel magnetism [62, 106, 121]. However, further inves-

tigations require synthesis of new compounds. Generally, such systems are initially

only available as powders. This causes problems when characterising their magnetic

properties. This issue is enhanced if the magnitude of the single-ion anisotropy is

at a similar energy scale to the strength of magnetic interactions [13, 122]. The

powdered nature of the samples causes a loss of information due to the scrambling

of the crystal axes with respect to the applied field. Though single crystals solve

this issue, attempts to produce crystals large and pure enough for measurements

take a lot of time and effort. Thus, it is necessary to know if it is worth pursuing

such projects on new, though still powdered, S = 1 materials.

A previous study accurately characterised the magnetic ground state of the

powdered S = 1 Q1D AFM [Ni(HF2)(pyz)2](SbF6) using elastic and inelastic neu-

tron scattering [13]. Pulsed-field magnetisation measurements and numerical mod-

elling of experimental variables were also used to supplement the analysis. How-

ever, neutron scattering and pulsed-field techniques are expensive in both time and

money as they may require travel to specialist facilities, assuming the relevant pro-

posal is accepted. Neutron scattering measurements also require large amounts of

deuterated sample, which can be highly challenging to obtain in new compounds
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containing organic molecules. Hence the focus of this chapter will be on the analysis

of powdered S = 1 AFMs using readily-available, lab based equipment. The aim

is to extract enough information on the measured system to determine if further,

more time consuming experiments or synthesis of single crystals are necessary. The

method used in Ref. [13] is therefore extended to include magnetisation and heat

capacity measurements that can be performed at non-specialist institutions.

The compounds studied in this chapter are described by the general S = 1

Hamiltonian:

Ĥ = D
∑
i

Ŝz2
i +E

∑
i

(
Ŝx2
i − Ŝ

y2
i

)
+J

∑
〈i,j〉

Ŝ i·Ŝ j+J⊥
∑
〈i,j′〉⊥

Ŝ i·Ŝ j′+µbµ0

∑
i

H·g·Ŝ i,

(3.1)

where J is the magnetic exchange interaction between Ni2+ ions within a chain

or plane and J⊥ is the exchange interaction perpendicular to J . Angular brackets

denote a sum over unique pairs of metal ions and a primed index indicates an ion

in an adjacent chain or plane, D and E are the axial and rhombohedral single-ion

anisotropy parameters and the final term is the Zeeman splitting.

I have used DC susceptibility, pulsed-field magnetisation and heat ca-

pacity measurements of the isolated compounds [Ni(3,5-lut)4(H2O)2](BF4)2,

Ni(SiF6)(H2O)(4-mepz)4 and Ni(H2O)2(acetate)2(4-picoline)2 to determine which

experimental techniques are suited to determining the effects of single-ion anisotropy

in powdered D and E only spin-1 systems. Though the pulsed-field technique is not

easily accessible, the maximum applied fields required were no more than 20 T,

which are within the reach of commercially available superconducting magnets. I

then checked the reliability with which the single-ion anisotropy parameters can be

obtained at readily available fields by using high-field ESR measurements. Using

what has learnt from studying these systems, I will attempt to characterise the

magnetic parameters of the Q2D AFM [Ni(pyz)2(H2O)2](BF4)2 using similar tech-

niques. A final confirmation of the characterisation method was made by comparing

the results with muon-spin relaxation and elastic neutron scattering measurements.

Table. 3.1 shows which measurements were made on each sample. I finished by ex-

plaining how the single-ion anisotropy changes with structure and composition and

compared this with theory [34, 35].
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Table 3.1: Table showing which experimental techniques were used to study each
compound in this chapter. Red ticks correspond to measurements I have made and
analysed. Blue ticks represent measurements analysed by me but not performed by
me. µ-SR data was collected and analysed by Fan Xiao, Tom Lancaster, Robert
Williams and Stephen Blundell. I participated in the elastic neutron scattering
(ENS) experiment, but the analysis were performed Roger Johnson, University of
Oxford.

Compound χ(T ) M(H) Cp(T ) ESR µ-SR ENS

[Ni(3,5-lut)4(H2O)2](BF4)2 X X X X
Ni(SiF6)(H2O)(4-mepz)4 X X X

Ni(H2O)2(acetate)2(4-picoline)2 X X X
[Ni(pyz)2(H2O)2](BF4)2 X X X X X

3.2 Structures

Figure 3.1: (a) 100 K structure of [Ni(3,5-lut)4(H2O)2](BF4)2 contains Ni(3,5-
lut)4(H2O)2 molecular complexes separated by two BF−4 ions and stacked along
the [101] direction. Lutidine hydrogens are omitted for clarity. (b) Local
environment around each nickel ion for both [Ni(3,5-lut)4(H2O)2](BF4)2 and
[Ni(pyz)2(H2O)2](BF4)2. Bond distances are given in Table 3.2.

Single-crystal x-ray diffraction measurements of [Ni(3,5-lut)4(H2O)2](BF4)2

at 100 K were performed by John Schlueter and Yu-shen Cheng on the 15-ID-B

beamline at the Advanced Photon Source, Argonne, USA. The size of the measured

crystal was of the order of 100 µm. The monoclinic [Ni(3,5-lut)4(H2O)2](BF4)2 con-

tains distorted NiN4O2 octahedrons (Table 3.2), with four equatorial nitrogen atoms
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Table 3.2: Structural parameters of [Ni(H2O)2(3,5-lut)4](BF4)2 and
[Ni(pyz)2(H2O)2](BF4)2.

Compound [Ni(3,5-lut)4(H2O)2](BF4)2 [Ni(pyz)2(H2O)2](BF4)2
Crystal system Monoclinic tetragonal

Space group P21/n I4/mcm
a (Å) 12.2611(8) 9.91670(18)
b (Å) 17.0125(12) 9.91670(18)
c (Å) 16.7006(11) 14.8681(4)

NN Ni-Ni (Å)a 9.184 6.979
NNN Ni-Ni (Å)b 9.754 7.401

Ni-O1 (Å) 2.099(2) 2.050(7)
Ni-O2 (Å) 2.08(2) 2.050(7)
Ni-N1 (Å) 2.110(3) 2.1724(18)
Ni-N11 (Å) 2.105(3) 2.1724(18)
Ni-N21 (Å) 2.094(3) 2.1724(18)
Ni-N31 (Å) 2.115(3) 2.1724(18)

a Nearest-neighbour nickel ion distances. For [Ni(3,5-lut)4(H2O)2](BF4)2 the nearest
neighbours are in the [101] crystal direction and for [Ni(pyz)2(H2O)2](BF4)2 they are

within the within the Ni-pyz planes. b Next to nearest-neighbour nickel ion distances. For
[Ni(3,5-lut)4(H2O)2](BF4)2 the nearest neighbours are in the [110] crystal direction whilst

for [Ni(pyz)2(H2O)2](BF4)2 this is the distance between nickel ions in adjacent planes.

donated by 3,5-lut molecules and two axial oxygen atoms provided by water molecules

(Fig. 3.1). The three bond angles between opposite donor atoms in the nickel octa-

hedra are within the range 176.95◦ ≤ ∠ ≤ 179.17◦, and the N-Ni-O angle varies

from 87.7◦ ≤ ∠ ≤ 92.4◦ (Table 3.2). Two BF−4 counter ions, hydrogen bonded

to water molecules on adjacent complexes, and non-bridging 3,5-lut molecules keep

adjacent molecules separated [Fig. 3.1(a)].

Single-crystal x-ray diffraction measurements of Ni(SiF6)(H2O)(4-mepz)4 and

Ni(H2O)2(acetate)2(4-picoline)2 at 150 K were performed using a Bruker Kappa

APEX II CCD-equipped single-crystal diffractometer by Atta Arif at the Univer-

sity of Utah, USA. The size of the measured crystals were of the order of 100 µm.

Ni(SiF6)(H2O)(4-mepz)4 is a monoclinic system made up of low-symmetry, axially

elongated NiFON4 octahdra [Fig. 3.2(a)]. Equatorial nitrogen atoms are donated by

the 4-mepz (mepz = methylpyrazolyl; C4H6N2) while the axial fluorine and oxygen

atoms come from the SiF6 and water molecules respectively. The nearest neighbour

Ni-Ni distance is ≈ 8.5 Å between Ni2+ ions in the [101] direction (see Table. 3.3).

There appears to be weak hydrogen bonding between an SiF6 molecule coordinated

to one nickel ion and a water molecule coordinated to an adjacent nickel ion in the

[-110] direction.

Ni(H2O)2(acetate)2(4-picoline)2 contain slightly axially elongated NiN2O4
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Figure 3.2: 150 K structure of Ni(SiF6)(H2O)(4-mepz)4. (a) Local environment
around each Ni2+ ion. (b) The NiFON4 octahedra are arrayed with an SiF6 molecule
coordinated to one Ni2+ ion hydrogen bonded to one water molecules coordinated
to an adjacent Ni2+ ion. Mepz hydrogen atoms are omitted for clarity

octahedrons [Fig. 3.3(a)]. These are made up of two axial nitrogen atoms donated

by the 4-picoline molecules (picoline = CH3C5H5N) and four equatorial oxygen

atoms, two donated by acetate (acetate = CH3COO−) molecules and the other two

from water molecules. All ligands are non-bridging. The bond lengths within the

NiN2O4 octahedron is shown in Table. 3.3. The bond lengths are different for all

three crystal directions. Ni(H2O)2(acetate)2(4-picoline)2 units are kept separated

in the crystal b (y) direction via acetate molecules and in the c (z) direction by the

4-picoline molecules [Fig. 3.3(b)]. Water molecules point in the a (x) direction. The

Ni-Ni nearest neighbour distance is 7.631 Å which occurs between adjacent Ni2+

ions in the xy-plane.

X-ray diffraction measurements of powdered [Ni(pyz)2(H2O)2](BF4)2 at room

temperature were performed by Saul Lapidus on the 11-BM beamline at the Ad-

vanced Photon Source, Argonne, USA. [Ni(pyz)2(H2O)2](BF4)2 is a tetragonal crys-

tal system consisting of sheets of Ni2+ ions in the ab(xy)-plane linked via pyrazine

ligands in a square planar arrangement [Fig. 3.4(a)]. Water molecules keep the

planes separated in the c(z) direction. The metal centres occupy axially compressed

NiN4O2 octahedra [Fig. 3.1(b)], with the equatorial nitrogen atoms deriving from

the pyrazine network and oxygen atoms donated from the H2O ligands. Opposite

Ni-ligand bonds in the nickel octahedra are all 180◦ whilst all N-Ni-O and Nx-Ni-Ny
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Figure 3.3: 150 K structure of Ni(H2O)2(acetate)2(4-picoline)2. (a) The NiN2O4

octahedron. (b) Arrangements of Ni(H2O)2(acetate)2(4-picoline)2 complexes in the
yz plane. Water molecules in the x direction keep these planes separated.

angles are 90◦. The H2O ligands are non-bridging, and in conjunction with a spacer

layer of BF−4 counter ions act to keep the sheets well separated [Fig. 3.4(b)]. The

hydrogen atoms in the water molecules can occupy four equally probable positions,

all of which are shown in Fig. 3.4(b).

The nearest-neighbour Ni-Ni distance is larger in [Ni(3,5-lut)4(H2O)2](BF4)2

compared to [Ni(pyz)2(H2O)2](BF4)2. The non-bridging lutidine molecules do not

lead to any through-bond pathway for magnetic interactions between Ni2+ ions in

the system. Likewise, Ni(SiF6)(H2O)(4-mepz)4 and Ni(H2O)2(acetate)2(4-picoline)2

have no obvious bond pathways to mediate magnetic exchange. Therefore, [Ni(3,5-

lut)4(H2O)2](BF4)2, Ni(SiF6)(H2O)(4-mepz)4and Ni(H2O)2(acetate)2(4-picoline)2

are expected to be well modelled by the Hamiltonian described in Eq. 3.1, with

J = J⊥ = 0. It is likely that there is a significant E term due to the inequivalence

of the x and y axes around each Ni2+ ion [33].
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Table 3.3: Structural information and bond lengths for Ni(SiF6)(H2O)(4-mepz)4

and Ni(H2O)2(acetate)2(4-picoline)2. See Fig. 3.2 and Fig. 3.3 for the location of
the ligands bonded to the Ni2+ ion.

Compound Ni(SiF6)(H2O)(4-mepz)4 Ni(H2O)2(acetate)2(4-picoline)2

Structure Monoclinic Orthorhombic
Space group C1c1 Pcab

Ni- (Å) N1 = 2.0658(19) N1 = 2.107(3)
Ni- (Å) N3 = 2.089(2) N1 = 2.107(3)
Ni- (Å) N5 = 2.068(2) O1 = 2.073(2)
Ni- (Å) N7 = 2.096(2) O1 = 2.073(2)
Ni- (Å) F1 = 2.1260(12) O2 = 2.059(2)
Ni- (Å) O1 = 2.5038(17) O2 = 2.059(2)
a (Å) 12.7840(6) 8.8996(3)
b (Å) 14.2862(6) 12.3995(4)
c (Å) 13.5967(6) 17.6516(7)

Figure 3.4: Room temperature structure of [Ni(pyz)2(H2O)2](BF4)2. (a)
[Ni(pyz)2]2+ sheets. (b) Sheets are stacked directly above each other along c. Non-
coordinated BF−4 counter-ions keep the layers well separated. Each of the water
hydrogen atoms occupies one of four equally probable locations. Pyrazine hydrogen
atoms are omitted for clarity. The key is located in Fig. 3.1
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Pyrazine is known as a good mediator of magnetic exchange [1, 88]. Also,

the x and y axes around each Ni2+ ion in [Ni(pyz)2(H2O)2](BF4)2 are equivalent.

The structure of [Ni(pyz)2(H2O)2](BF4)2 therefore suggests that each Ni2+ ion in

this material can be represented using Eq. 3.1 with J 6= 0 and E = 0. As

the inter-plane distances are larger than the intra-plane distances with no direct

bridging between nickel ions in adjacent planes, it is assumed that J⊥ � J for

[Ni(pyz)2(H2O)2](BF4)2 in the analysis below. Single-ion anisotropy is a crystalline-

electric field effect and is dependent on the environment around the magnetic ion.

[Ni(pyz)2(H2O)2](BF4)2 contains a comparable local octahedra around the Ni2+ ions

to [Ni(3,5-lut)4(H2O)2](BF4)2, though [Ni(3,5-lut)4(H2O)2](BF4)2 has lower tetrag-

onal symmetry. This can therefore be used to investigate the structural dependence

of D in for Ni2+ ions in octahedral environments.

3.3 Isolated Ni2+ systems

3.3.1 [Ni(3,5-lut)4(H2O)2](BF4)2

Magnetometry

Pulsed-field magnetisation measurements of powdered [Ni(3,5-

lut)4(H2O)2](BF4)2 rise smoothly towards a broad saturation [Fig. 3.5(a)].

The differential susceptibility [Fig. 3.5(b)] becomes steeper on cooling, and develops

a very weak maximum at µ0Hc = 6.0 ± 0.6 T at 0.63 K. This feature has

previously been observed in polycrystalline Ni2+ coordination polymers [101] and

is attributed to the ground state energy level crossing between the ms = 0 and

ms = −1 levels when a magnetic field is applied parallel to the z-axis [101]. This

occurs in isolated S = 1 easy-plane systems (D � J) and causes a sharp rise in

Mz(H). As the data in Fig. 3.5 was measured on a powder, the peak in dM/dH is

weakened substantially such that it is difficult to accurately determine the position

of the maximum. Therefore, by differentiating dM/dH again, Hc is found from the

midpoint of the differential peak shape in d2M/dH2 [Fig. 3.5(c)]. Using Eq. 2.2,

an estimate of
√
D2 − E2 = +9.0 ± 0.9 K is obtained.

DC susceptibility measurements of [Ni(3,5-lut)4(H2O)2](BF4)2 (Fig. 3.6)

show a slow rise in χ(T ) as the temperature is lowered until T ≈ 3 K, where

the data starts to flatten out. As the analysis of the magnetisation measurements

suggests that D � J , the data was fitted to a D and E only model [32, 101] which in-

cludes a temperature independent diamagnetic term χ0. Values of D = +8.69(3) K,

E = 1.3(1) K, g = 2.24(1) and χ0 = −8.5(1.0)× 10−9 m3mol−1 were extracted.
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Figure 3.5: (a) Pulsed-field magnetization and (b) differential susceptibility data of
[Ni(3,5-lut)4(H2O)2](BF4)2, calibrated using DC SQUID magnetometry. (c) Gradi-
ent of the differential susceptibility indicates a derivative shape which develops on
cooling to 0.63 K. The centre of this feature (arrow) marks Hc (see text).
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Figure 3.6: DC susceptibility measurements of powdered [Ni(3,5-
lut)4(H2O)2](BF4)2 made at a field of 0.1 T. The data was fitted to a D
and E only model with a small, temperature independent diamagnetic term.

The model is in good agreement with the data over the whole temperature range.

The values of D and E gives a magnitude of
√
D2 − E2 that is within the error of the

value obtained from the pulsed-field measurement. If D is allowed to be negative,

then the resultant fitted value of E does not meet the condition |D| > 3E. This,

along with the presence of the bump in the pulsed-field differential susceptibility

data, strongly suggests that [Ni(3,5-lut)4(H2O)2](BF4)2 is easy-plane.

Heat capacity

Zero-field heat capacity measurements of powdered [Ni(3,5-lut)4(H2O)2](BF4)2

pressed into a pellet are shown as Cp/T (T ) in Fig. 3.7. The data shows two

peaks, one between 40 and 50 K which is due to phonons, and a second at ≈ 3 K

which is attributed to a Schottky anomaly. The latter feature occurs due to thermal

excitations between two energy states. If present in the zero-field measurements,

it is a sign of single-ion anisotropy in the sample. In between these two peaks is a

region where there are significant contributions from both single-ion anisotropy and

lattice phonons. Due to this, it is very difficult to model the lattice phonons accu-

rately without including contributions from the single-ion anisotropy. This can be

overcome by fitting the whole data range to a model incorporating lattice phonons

and single-ion anisotropy.

The heat capacity of an N -level system is given by [25]

Cp = kbT

[
2

(
∂ lnZ

∂T

)
+ T

(
∂2 lnZ

∂T 2

)]
, (3.2)

where the partition function Z is

47



Figure 3.7: Heat capacity measurements of [Ni(3,5-lut)4(H2O)2](BF4)2. (a) Zero-
field measurements presented as Cp/T . The whole data range is fitted to a model
incorporating contributions from lattice phonons (Eq. 2.1) and single-ion anisotropy
(Eq. 3.5). The parameters obtained are shown in Table. 3.4. (b) Magnetic heat
capacity, resulting from the subtraction of Clatt, as a function of temperature at
fields in the range 0 ≤ µ0H ≤ 9 T.
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Table 3.4: Parameters obtained from the lattice and single-ion anisotropy fit to
zero-field heat capacity measurements of [Ni(3,5-lut)4(H2O)2](BF4)2 [Fig. 3.6(a)].

Parameter Value

AD 53(3) J/Kmol

θD 50(1) K

AE1 128(5) J/Kmol

θE1 87(3) K

AE2 199(5) J/Kmol

θE2 195(7) K

AE3 387(6) J/Kmol

θE3 540(9) K

D 10.4(1) K

E 2.6(2) K

Z =
N∑
α

e−βEα . (3.3)

For spin-1 systems with non-zero D and E, the three ms energy levels are separated

by D − E and 2E in zero-field (Fig. 2.8). For easy-plane anisotropy, the ms = 0

state has the lowest energy. For easy-axis anisotropy, the ms = −1 level is in the

ground state. As it is only the difference in energy that is important, setting ms = 0

as E0, this gives E−1 = ±|D| − E and E+1 = ±|D| + E for all D. As ±|D| is the

same as D, the partition function of a spin-1 D and E only system is

Z = 1 + e−β(D−E) + e−β(D+E) = 1 + 2e−βDcosh (βE) . (3.4)

Substituting Eq. 3.4 into Eq. 3.2, the zero-field heat capacity of a D and E only

spin-1 system is thus:

Cp = kbNa
2eβD

[(
D2 + E2

)
cosh (βE)− 2EDsinh (βE)

]
+ 4E2

T 2 [eβD + 2cosh (βE)]
2 . (3.5)

This can be used to model both easy-axis and easy-plane anisotropy, with the fitted

sign of D being used to distinguish between the two cases. A model incorporating

both Eq. 3.5 and Eq. 2.1 was used to fit the data in Fig. 3.7. The parameters

extracted are shown in Table. 3.4. The model is in good agreement with the data

over the whole range. The values of D = +10.4(1) K and E = 2.6(2) K are

consistent with the magnetometry measurements. If D is allowed to be negative,

then fitted value of E doesn’t meet the condition |D| > 3E. The lattice parameters
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in Table. 3.4 were then used to subtract the lattice contribution from the total heat

capacity to obtain the field dependence of the magnetic heat capacity of [Ni(3,5-

lut)4(H2O)2](BF4)2, shown as Cmag(T ) in Fig. 3.7(b). This shows the position

of the Schottky anomaly increase in temperature as the field is raised. There is

an initial drop in amplitude between 0 and 1 T. As the field is increased further,

the amplitude remains relatively constant. Comparing with Fig. 2.5, this is further

confirmation of the presence of easy-plane anisotropy in [Ni(3,5-lut)4(H2O)2](BF4)2.

ESR

ESR is the measurement technique most suited to characterising the single-ion

anisotropy of quantum magnets. Equipment to perform ESR measurements us-

ing low-frequency (ν < 100 GHz) microwaves and low-fields (µ0H < 4 T) are

commercially available. However, to accurately determine the zero field splitting

parameters with D & 10 K requires much higher frequencies and fields. These

require custom built spectrometers at specialist facilities. ESR measurements of

[Ni(3,5-lut)4(H2O)2](BF4)2 were therefore made at the National High Magnetic

Field Laboratory, Tallahassee, USA. The purpose of these measurements is to con-

firm the sign and magnitudes of the single-ion anisotropy parameters of [Ni(3,5-

lut)4(H2O)2](BF4)2 obtained from magnetometry and heat capacity measurements.

Low-temperature ESR measurements of powdered [Ni(3,5-lut)4(H2O)2](BF4)2

were made at frequencies in the range 100 < ν < 630 GHz (Fig. 3.8). Low-frequency

data [Fig. 3.8(a)] show the high-field z transition (ε) which moves down in field as

the frequency increases. The high frequency data shows two large, broad resonances

that move to higher fields as the frequency is increased [Fig. 3.8(b)]. These reso-

nances sharpen and get closer together as the frequency is raised. By comparison to

previous published ESR data of a powdered S = 1 quantum magnet, this suggests

that they might be the half-field x and y transitions (αx and αy respectively) [101].

There are two, smaller resonances observed at higher fields which are due to the low

and high-field x resonances (βx and γx respectively) [Inset to Fig 3.8(a), Fig. 3.8(b)]

by comparison to Fig. 2.7.

The positions of these transitions were fitted to a D and E only model

[30]. To obtain the best fit, it was found that the high-field resonance of the two

large resonances is the low-field y resonance (βy) for ν < 330 GHz and the αx

transition for ν > 330 GHz. The reason why the βy transition is not observed

at higher frequencies or the αx transition at lower frequencies is unknown. The

low-field resonance is the γx transition. The parameters extracted from the fit are

gx = 2.20(1), gy = 2.33(2), gz = 2.05(12), |D| = 10.4(1) K and E = 2.12(4) K.
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Figure 3.8: ESR measurements of [Ni(3,5-lut)4(H2O)2](BF4)2 at different frequen-
cies, labelled in GHz and measured at temperatures of ≈ 3 K, apart from the 321.6
and 416 GHz spectra which were recorded at 5 K. Resonances of known transitions
are labelled. Spectra were made in the frequency range (a) 145 < ν < 170 GHz and
(b) 300 < ν < 630 GHz. Inset: 324 GHz spectra showing the βx and γx transition.
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Figure 3.9: Fitting the observed resonances from Fig. 3.8 to a D and E only model
with parameters gx = 2.20(1), gy = 2.33(2), gz = 2.05(12), D = 10.42(7) K
and E = 2.12(4) K extracted in good agreement with the data.

These parameters are consistent with the experimental data over the whole fre-

quency range of the experiment, and with previous magnetometry and heat capacity

experiments. A simulation at ν = 412.8 GHz is shown in Fig. 3.10. It captures the

αx and βx transitions well. The αy resonance is also recreated but at a much lower

intensity than in the data. The very broad resonance in the data between 7 and 8

T is seen in the simulation but with a much smaller linewidth. The sign of D can

be found from a temperature dependent ESR study [Fig. 3.10]. This shows the βx

transition located at 11 T. The βx resonance decreases in intensity as temperature

is increased. The βx transition is also more intense than the γx transition (Inset to

Fig. 3.10) at low temperatures. Both of these observations indicate that [Ni(3,5-

lut)4(H2O)2](BF4)2 exhibits easy-plane anisotropy. That gx > gz is further evidence

of easy-plane anisotropy and the value of λ = −139 K is consistent with theory

(see section 1.2.3). ESR measurements of [Ni(3,5-lut)4(H2O)2](BF4)2 confirm the

single-ion anisotropy analysis from magnetometry and heat capacity measurements.
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Figure 3.10: Temperature dependent ESR measurements of [Ni(3,5-
lut)4(H2O)2](BF4)2 at 5 K (green line), 30 K (red line) and 80 K (blue line)
at ν = 412.8 GHz. The black line is an ESR simulation obtained from a fit to all
observed resonances [see Fig. 3.9(b)] at 5 K.

3.3.2 Ni(SiF6)(H2O)(4-mepz)4

Magnetometry

Pulsed-field measurements of powdered Ni(SiF6)(H2O)(4-mepz)4 rises slowly to sat-

uration [Fig. 3.11(a)]. The data was calibrated using quasi-static SQUID measure-

ments and shows that Ni(SiF6)(H2O)(4-mepz)4 saturates at 2.25(1)µb, which Eq.

1.16 suggests g = 2.25(1). The differential susceptibility at 0.58 K drops smoothly

until a weak peak at ≈ 8 T. This is indicative of an easy-plane Ni2+ compound with

negligible magnetic interactions [101]. The data continues to drop smoothly after

the weak peak. The position of Hc is found from the midpoint of the peak deriva-

tive shape in the d2M/dH2 data and is located at Hc = 7.8(6) T. Using Eq. 2.2, an

estimate of
√
D2 − E2 = +11.8(7) K is obtained.

DC susceptibility of powdered Ni(SiF6)(H2O)(4-mepz)4(Fig. 3.12) rises as

the temperature is lowered until the data starts to plateau below T = 3 K. The
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Figure 3.11: (a) Low temperature pulsed-field magnetisation measurements, cali-
brated with SQUID magnetisation measurements, of Ni(SiF6)(H2O)(4-mepz)4. (b)
Differential susceptibility and gradient of the differential susceptibility shows the
feature attributed to easy-plane anisotropy at 7.8(6) T.

plateau is suggestive of easy-plane anisotropy [32]. The analysis of the magnetisa-

tion measurements indicates D � J . Therefore a D and E only model is used to

fit the data, with the parameters D = +11.25(2) K, E = 0.6(1) K and g = 2.25(1)

extracted. These are within the errors of the parameters obtained from the mag-

netisation measurements.

ESR

Low temperature ESR spectra of powdered Ni(SiF6)(H2O)(4-mepz)4 were made in

the frequency range 100 ≤ ν ≤ 326.4 GHz [Fig. 3.13(a)]. Two different temperatures

were used. The 108, 208 and 325.4 GHz spectra were made at 5 K, all other
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Figure 3.12: DC susceptibility measurement of Ni(SiF6)(H2O)(4-mepz)4shows a rise
in the data before it plateaus as the temperature is lowered. This was fitted to a
D and E only model with the parameters D = 11.25(2) K, E = 0.57(10) K and
g = 2.25(1) extracted. The model is in good agreement with the data.

spectra were made at the base temperature of the cryostat (≈ 3 K). Resonances

corresponding to high-field x (γx) and y (γy) transitions are observed in the 104 and

108 GHz sweeps. The high-field z (ε) transition is the most intense resonance for

ν ≤ 208 GHz and gives a direct measure of D by linearly extrapolating the position

of the transition at different ν back to zero. The zero-field intercept occurs at ≈
230 GHz, which corresponds to a zero-field splitting energy of ≈ 11 K. The 108 GHz

and 208 GHz sweeps were also measured at 30 K and show the ε transition decrease

in intensity as the temperature is raised [Fig. 3.13(b)]. This is indicative of easy-

plane anisotropy in Ni(SiF6)(H2O)(4-mepz)4. The γy transition is only observed

in the high temperature data [Inset to Fig. 3.13(b)] and is further evidence that

D > 0. The z (Ψ) half-field transition also figures prominently in the low frequency

sweeps. For ν ≥ 230 GHz, the low field x (βx), y (βy) and z (ζ) transitions are

observed. Apparent features that likely correspond to the half-field x (αx) and y

(αy) transitions are positioned to the high-field side of ζ in the 326 GHz spectra,

though there is too much noise for their positions to be accurately resolved.

The observed transitions were plotted and fitted to a D and E only model

(Fig. 3.14). The parameters D = 11.45(2) K, E = 0.49(1) K, gx = 2.240(7),

gy = 2.228(5) and gz = 2.158(5) were extracted, and the model is in good agreement
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Figure 3.13: (a) ESR spectra of powdered Ni(SiF6)(H2O)(4-mepz)4 labelled in GHz
for each spectra. Measurements were performed at ≈ 3 K (100, 104, 109.6, and 112
GHz) and 5 K (108, 208 and 326.4 GHz). Resonances of known transitions are
labelled. The resonances marked with * are likely to be due to impurities. A 5 K
simulation at 326.4 GHz with the parameters obtained from a D and E only fit to
the observed resonances (Fig. 3.14) has been added in good agreement with the
data. The circled resonances in the 326 GHz data and simulation correspond to the
αx and αy transitions. (b) Temperature dependent ESR spectra at 108 and 208
GHZ. The decrease in the intensity of the low-field z-transition as the temperature
is increased is clearly observed in both spectra, indicating that D > 0. Inset: 30 K
ESR spectra at 208 GHz showing the γy transition at 10.3 T. This is not observed
in the low temperature data and suggests that D > 0.
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Figure 3.14: Fitting of the transitions from Fig. 3.13 to a D and E only model which
yields the parameters D = 11.45(2) K, E = 0.49(1) K, gx = 2.240(7), gy = 2.228(5)
and gz = 2.158(5).

with the data. A 326 GHz simulation using these parameters at 5 K is shown in

Fig. 3.13 and recreates the βx and βy transitions. The simulated ζ resonance at 3 T

is also in good agreement with the data, whilst the αx and αy resonances are shown

to lie in the noisy region to the high-field side of ζ, confirming the analysis earlier.

That gx > gz is consistent with easy-plane anisotropy and a value of λ = −279 K

is obtained for the spin-orbit coupling parameter [34]. This is of the same order

of magnitude that is expected for Ni2+ ions. The parameters obtained from the

ESR measurements confirm those obtained from the magnetometry measurements.

Therefore, Ni(SiF6)(H2O)(4-mepz)4 can be described by Eq. 3.1 with J = J⊥ = 0,

D = 11.25(2) K and E = 0.6(1) K.
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Figure 3.15: (a) SQUID magnetisation measurements of powdered
Ni(H2O)2(acetate)2(4-picoline)2 at different temperatures. The lowest tem-
perature data saturates above 2µb. The 10 K data has been fitted with a
Brillouin function, with g = 2.178(1) extracted. (b) Differential susceptibility of
Ni(H2O)2(acetate)2(4-picoline)2 shows no evidence of critical fields due magnetic
interactions or ground state energy-level crossings.

3.3.3 Ni(H2O)2(acetate)2(4-picoline)2

Magnetometry

Quasi-static SQUID magnetisation measurements of powdered Ni(H2O)2(acetate)2(4-

picoline)2 rise to a broad saturation point [Fig. 3.15(a)]. The low temperature data

saturates above 2µb, consistent with expected g-values for N2+ ions in octahedral

environments [34]. The differential susceptibility of the 2 K data falls smoothly over

the whole field range of the measurements. There is no evidence of magnetic interac-

tions or ground state energy level crossings. It is possible that the temperature isn’t

low enough for a feature to be observed or that Ni(H2O)2(acetate)2(4-picoline)2 is

easy-axis.

DC susceptibility measurements of powdered Ni(H2O)2(acetate)2(4-picoline)2

continually rise as the temperature is lowered to 1.8 K (Fig. 3.16). There is no
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Figure 3.16: DC susceptibility measurement of Ni(H2O)2(acetate)2(4-picoline)2

shows a rise in the data as the temperature is lowered. This was fitted to a D and E
only model with a small diamagnetic component. The parameters D = −5.78(8) K,
E = 1.38(2) K, g = 2.22(1) and χ0 = −2.4(1.0) m3mol−1 extracted. The model is
in good agreement with the data.

sign of a peak or a plateau in the data. The data was fitted to a D and E only

model which includes a small temperature independent contribution χ0. The pa-

rameters extracted are D = −5.8(1) K, E = 1.38(2) K, g = 2.22(1) and χ0 =

−2.4(1.0) m3mol−1. These parameters model the data very well. If the D pa-

rameter is allowed to be positive, then the condition |D| ≥ 3E is not met. There-

fore, magnetometry measurements suggest Ni(H2O)2(acetate)2(4-picoline)2 contains

easy-axis anisotropy with D = −5.8(1) K and E = 1.38(2) K.

Heat capacity

Zero-field heat capacity measurements of powdered Ni(H2O)2(acetate)2(4-picoline)2

were performed by Jamie Brambleby at The University of Warwick. The powdered

sample was pressed into a pellet for the measurement and the data is shown as

Cp/T (T ) in [Fig. 3.17(a)]. The data shows a peak between 40 and 50 K due to

lattice phonons. Below the peak, the data drops until ≈ 6 K where it starts to

rise. As magnetisation measurement indicated negligible magnetic interactions in

Ni(H2O)2(acetate)2(4-picoline)2 the rise in the data is attributed to be the high-

temperature side of a Schottky anomaly peak. Therefore, a model incorporating

lattice phonons (Eq. 2.1) and single-ion anisotropy (Eq. 3.5) was used to fit the

data. It was not possible to fit this model over the whole temperature range due to

an over-parameterisation of the fit. Therefore, the data below 30 K was fitted to a

model with one Debye mode, one Einstein mode and a single-ion anisotropy term.
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Figure 3.17: (a) Zero-field heat capacity measurement of Ni(H2O)2(acetate)2(4-
picoline)2. The data below 30 K is fitted to a model with one Debye, one Einstein
mode and a single-ion anisotropy term. The parameters obtained are shown in Table.
3.5. (b) Magnetic heat capacity of Ni(H2O)2(acetate)2(4-picoline)2 resulting from
the subtraction of Clatt.
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Table 3.5: Parameters obtained from the lattice and single-ion anisotropy fit to zero-
field heat capacity measurements of Ni(H2O)2(acetate)2(4-picoline)2 [Fig. 3.17(1)].

AD 61(3) J/K mol

θD 82(2) K

AE1 112(8) J/K mol

θE1 135(6) K

D -6.6(1) K

E 1.51(1) K

The parameters extracted are shown in Table. 3.5. The model is in good

agreement with the data over the fitted range. The values of D = −6.6(1) K

and E = 1.51(1) K extracted. The value of D differs from that obtained in the

susceptibility measurements by 12%, whereas the E parameters are in much bet-

ter agreements. If D is allowed to be negative in the fit, then the values of D

and E obtained do not meet the condition |D| > 3E. The parameters in Table.

3.4 were then used to subtract the lattice contribution from the total heat capac-

ity to obtain the magnetic heat capacity measured at different magnetic fields of

Ni(H2O)2(acetate)2(4-picoline)2 [3.17(b)]. This shows the position of the Schottky

anomaly increases in temperature as the field increase. There is an initial increase

in amplitude between 0 and 1 T. As the field is increased further, the amplitude

increases at a slower rate. Comparing with Fig. 2.5, this is further confirmation of

easy-axis anisotropy in Ni(H2O)2(acetate)2(4-picoline)2.

3.3.4 Discussion

The magnetic characteristics of powdered samples of the isolated S = 1 magnets

[Ni(3,5-lut)4(H2O)2](BF4)2, Ni(SiF6)(H2O)(4-mepz)4 and Ni(H2O)2(acetate)2(4-

picoline)2 have been analysed. The magnetic parameters obtained from each tech-

nique for each system is shown in Table. 3.6. The parameters obtained from the

different experimental techniques for each compound are consistent with each other.

Magnetometry measurements are able to give a good initial characterisation of pow-

dered S = 1 samples. Whilst the magnetisation technique doesn’t always show a

feature indicating the size and sign of D, it does show if D � J or not. The sign

and size of D can then be extracted from susceptibility measurements of powdered

samples of isolated compounds with E 6= 0. As was found for all three compounds

above, if the sign of D obtained from the fit is incorrect, then the condition |D| ≥ 3E

is not met. Hence susceptibility measurements can be used to obtain the D and E

parameters of systems that are known to be isolated. If E = 0, the behaviour of
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Table 3.6: Magnetic parameters obtained from all measurements on [Ni(3,5-
lut)4(H2O)2](BF4)2, Ni(SiF6)(H2O)(4-mepz)4 and Ni(H2O)2(acetate)2(4-picoline)2.
The M(H) value represents the

√
D2 − E2 value.

Compound χ(T ) M(H) Cp ESR

[Ni(3,5-lut)4(H2O)2](BF4)2
D (K) 8.69(3)

9.0(9)
10.4(1) 10.4(1)

E (K) 1.25(12) 2.6(2) 2.12(4)

Ni(SiF6)(H2O)(4-mepz)4
D (K) 11.25(2)

11.8(7) -
11.45(2)

E (K) 0.6(1) 0.49(1)

Ni(H2O)2(acetate)2(4-picoline)2
D (K) -5.8(1)

-
-6.6(1)

-
E (K) 1.38(2) 1.51(1)

the susceptibility at very low temperatures is distinct for easy-plane and easy-axis

anisotropy and can be used to determine the sign of D. For easy-plane anisotropy,

χxy plateaus and χz → 0 as T → 0 [32]. In the presence of easy-axis anisotropy, the

χxy component still plateaus but χz →∞ as the temperature approaches zero.

Likewise, heat capacity measurements of isolated systems can also accurately

determine the sign and size of D if there is a significant E term. When fitting

the heat capacity data of [Ni(3,5-lut)4(H2O)2](BF4)2 and Ni(H2O)2(acetate)2(4-

picoline)2 it was found that the condition |D| ≥ 3E is not met if the sign of D

was allowed to be incorrect. The sign and size of D is simple to extract if there is

no E term. This is due to the difference in the zero-field entropy of the Schottky

anomaly between easy-axis and easy-plane systems when E = 0. The amplitude

of the Schottky anomaly behaves differently between the two cases as the field is

raised, giving a straightforward identification of the zero-field ground state. The

magnitude of D can then be obtained using Eq. 3.5 with E set to zero. The method

of determining D from the field dependence of the Schottky anomaly that was

outlined in section 2.2 was not used due to the non-zero E term in the Hamiltonians

of [Ni(3,5-lut)4(H2O)2](BF4)2 and Ni(H2O)2(acetate)2(4-picoline)2.

ESR measurements are highly suited to determining SIA parameters, and

have confirmed the parameters obtained from magnetometry and heat capacity mea-

surements. However, powder-averaging increases the number of peaks in each field

sweep compared to measurements of single crystals. There can be up to 9 different

resonances that can occur in any ESR spectra. It may require numerous ESR spec-

tra at slightly different frequencies to determine which transition each resonance

belongs to. Even then, it may require fits to known resonances to indicate what

transitions a particular feature can correspond to. Resonances may also overlap.

For example, three transitions occur between 7 and 8 T in the 412.8 GHz sweep

of [Ni(3,5-lut)4(H2O)2](BF4)2 (Fig. 3.10). Whilst this may explain the broadness
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of the resonance observed in Fig. 3.10, it can make it difficult, if not impossible,

to determine an accurate field at which these transitions occur. This significantly

increases the time required to make and analyse ESR measurements of powdered

S = 1 samples.

3.4 Interacting Ni2+ ions

3.4.1 [Ni(pyz)2(H2O)2](BF4)2

Magnetometry

Susceptibility measurements of powdered [Ni(pyz)2(H2O)2](BF4)2 were made by

Jamie Brambleby at The University of Warwick. The data shows a rise in χ(T ) as the

temperature is lowered towards a broad peak at T = 3.6(2) K [Fig. 3.18(a)]. This

feature indicates the build up of short range correlations between Ni2+ ions within

the Ni-pyz planes. Below the peak, the data drops before appearing to flatten out.

By differentiating the χT data, a peak can be clearly seen at T = 3.0(2) K [Inset to

Fig. 3.18(a)], which is attributed to long-range ordering in [Ni(pyz)2(H2O)2](BF4)2

via the Fisher Relation [43]. A fit to the χ(T ) data was not attempted due to a lack of

suitable anisotropic S = 1 Q2D models. The high temperature inverse susceptibility

is fitted to a Curie-Weiss model with a temperature independent contribution χ0

[Fig. 3.18(b)]. The extracted parameters are g = 2.19(1), χ0 = +1.3(1) m−3mol

and θw = −3.4(3) K. The negative Weiss temperature indicates antiferromagnetic

interactions between adjacent Ni2+ ions in the xy planes.

The magnetisation curve of [Ni(pyz)2(H2O)2](BF4)2 recorded at 0.58 K rises,

with a slight concave shape at low temperatures, towards a broad saturation. This

is indicative of low-dimensional magnetism in this compound [123]. The differential

susceptibility [Fig. 3.19(b)] exhibits two critical fields, with no indication of a spin-

flop, suggesting that D > 0. The first critical field is taken to be the peak at

Hc1 = 5.7(3) K [Inset to Fig. 3.19(b)]. The upper critical field is more difficult to

determine. In Ref. [13], it is taken at the point where dM/dH = 0. However, in the

present data, this value is never reached. Therefore, it is taken to be when d2M/dH2

first approaches zero [Inset to Fig. 3.19(b)]. This occurs at Hsat = 15.7(5) K. Using

Eq. 2.3 and Eq. 2.4, with the g-factor taken from the Curie-Weiss model, values of

J = 1.05(5) K, D = 7.3(7) K and E = 0 are extracted.
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Figure 3.18: (a) DC susceptibility measurements and [inset]: d(χT ) /dT of pow-
dered [Ni(pyz)2(H2O)2](BF4)2. (b) Inverse susceptibility fitted to a Curie-Weiss
model over the range 100 ≤ T ≤ 300 K with parameters g = 2.19(1), θw = −3.4(3) K
and χ0 = +1.3(1) m−3mol extracted.
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Figure 3.19: (a) Pulsed-field magnetisation vs. applied field for powdered
[Ni(pyz)2(H2O)2](BF4)2. (b) Differential susceptibility shows two critical fields
(measured from the lowest temperature pulsed-field up sweep). Inset: gradient
of the differential susceptibility is used to determine Hsat (see text).

Heat capacity

The heat capacity of powdered [Ni(pyz)2(H2O)2](BF4)2 (plotted as Cp/T vs. T ) is

shown in Fig. 3.20(a). The data exhibits a sharp lambda peak at 3.0(2) K, which

is indicative of a transition to a magnetically ordered state. This is in excellent

agreement with the value of Tn obtained from susceptibility measurements. However,

the magnetisation data indicates that J is of the same order of magnitude as D.

Currently, there is no model to describe the zero-field heat capacity of a system of

magnetically interacting moments. Therefore the method of fitting the whole heat

capacity used in section 3.3.1 and section 3.3.3 cannot be repeated. The data was

fitted to the lattice heat capacity model in Eq. 2.1 with one Debye mode and three

Einstein modes of the range 24 ≤ T ≤ 300 K. Integration of the resultant Cmag

yields an entropy change at low temperature consistent with that expected for an
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Figure 3.20: (a) Ratio of heat capacity to temperature vs. temperature for
[Ni(pyz)2(H2O)2](BF4)2 in zero-field. The solid line is a fit to the data from
24 ≤ T ≤ 304 K to a model of one Debye and three Einstein modes. (b) En-
tropy vs. temperature in zero-field. (c) Magnetic heat capacity vs. temperature for
[Ni(pyz)2(H2O)2](BF4)2, resulting from the subtraction of Clatt, in applied fields in
the range 0 ≤ µ0H ≤ 9 T.(d) Magnetic heat capacity vs. temperature around the
Schottky anomaly. (e) Measured temperature of the broad maximum vs. applied
field scaled by the g-factor.
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Table 3.7: Clatt parameters for [Ni(pyz)2(H2O)2](BF4)2 obtained from modelling
high-temperature heat capacity data in Fig. 3.20(a).

Parameter Fitted Value (K)

Ad 98(13)
θd 116(9)
Ad1 109(6)
θd1 208(21)
Ad2 234(10)
θd2 509(20)
Ad3 247(27)
θd3 1287(128)

easy-plane S = 1 system. The resultant lattice parameters are shown in Table. 3.7.

With these parameters, the model is in good agreement with the data over the fitted

range.

The magnetic heat capacity [Fig. 3.20(c)] recreates the lambda peak caused

by the transition to long-ranged order. As the applied field is increased, the peak is

suppressed in height and moves to lower temperatures. This is is consistent with a

primary antiferromagnetic exchange interaction in [Ni(pyz)2(H2O)2](BF4)2. For ap-

plied fields in excess of 6 T, a small broad maximum emerges with a peak at approx-

imately 5 K. This moves to higher temperatures as the applied field is raised [Fig.

3.20(d)], strongly resembling the behaviour of a Schottky anomaly. The measured

values of this maximum Tmax vs. applied field are shown in Fig. 3.20(e). The data

linearly extrapolates to a positive temperature-axis intercept of 2.5(8) K, and has

a gradient δ = 0.20(7). Using Eq. 2.8, the value of D for [Ni(pyz)2(H2O)2](BF4)2 is

either: (i) an easy-plane anisotropy ofD = +7.1(3.5) K; or (ii) an easy-axis anisotropy

with D = -8.2(3.5) K. The easy-plane case is in good agreement with the value of D

obtained in the magnetisation measurement and therefore [Ni(pyz)2(H2O)2](BF4)2

is easy-plane with D = +7.3(7) K. It is possible that the magnetic heat capacity

can give a negative D parameter, and this will be discussed further in section 3.4.2.

Muon spin relaxation

µ-SR measurement were performed and analysed by F. Xiao, T. Lancaster, R.

Williams and Stephen Blundell. Spectra at 2.18 and 3.50 K are plotted in Fig 3.21(a).

At temperatures below 3.2 K the asymmetry shows heavily damped oscillations at

two distinct frequencies. The amplitudes of the oscillations decreases with increas-

ing temperature. For T > 3.2 K, oscillations are seen at a lower frequency, but show

little variation as the temperature is further increased. The oscillations measured for
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Figure 3.21: (a) Example spectra for [Ni(pyz)2(H2O)2](BF4)2 at selected temper-
atures. Red lines are a fit using Eq. 3.6 and the blue line is a fit to Eq. 3.7. (b)
Temperature dependence of the fitted parameters using Eq. 3.6 (top) and Eq. 3.7
(see text). The border of the white/gray area is at T = 3.2 K and the dashed line
is a guide to the eye.

T < 3.2 K are characteristic of a quasi-static local magnetic field at the muon stop-

ping site, indicating the presence of long-range order in [Ni(pyz)2(H2O)2](BF4)2.

The asymmetry A(t) was initially fitted to a model with three components (two

oscillatory and one non-oscillatory) across all temperatures:

A(t) = Arel[p1e
−λ1t cos (2πν1t) + p2e

−λ2t cos (2πν2t) + (1− p1 − p2) e−λ3t] +Abg,

(3.6)

where Arel corresponds to the total relaxing amplitude, p1 and p2 are the weights of

the oscillatory components that have frequencies ν1 and ν2, and λ1 and λ2 are the

respective relaxation rates. The constant term Abg accounts for the non-relaxing

contribution from those muons that stop at the sample holder/cryostat tail. Fitted

values of λ1 and f are plotted against temperature in the top panel of Fig 3.21(b). A

sharp change is observed in both λ1 and f at around T = 3.2 K, strongly indicative

of a magnetic phase transition. The frequencies fall as the temperature nears the

transition at Tn [124]. However, oscillations in A(t) persists up to T = 20 K. This

oscillation is due to a muon-fluorine entangled state [125] and is described using:

A(t) = Arel

[
p1e
−λF−µtDz(ωF−µ, t) + p2e

−Λt
]

+Abg. (3.7)

68



Figure 3.22: (a) Scattered neutron intensity at 1.5 K as a function of d-spacing for
[Ni(pyz)2(H2O)2](BF4)2. The three magnetic peaks are marked with * and corre-
spond to (from left to right) the [101], [103] and [211] families of reciprocal lattice
vectors. (b) The 10 K data has been subtracted leaving the magnetic contribution
to the 1.5 K measurement. The relative diffraction intensities are consistent with
easy-plane anisotropy. Note that the artefacts that arise in the subtraction of the
brightest nuclear reflections in the presence of a slight lattice contraction have been
masked.

The function describing the muon-fluorine dipolar interaction Dz(ωF−µ, t) [125],

models the interaction of the muon with a single I = 1/2 fluorine nucleus.

[Ni(pyz)2(H2O)2](BF4)2 undergoes a transition to a state of long range magnetic

order at Tn = 3.2(1) K, which is within the errors of susceptibility and heat capac-

ity measurements.

Elastic neutron scattering

Elastic neutron scattering measurements of the deuterated, powdered [Ni(D2O)2(pyz-

d4)2](11BF4)2 were made on the WISH diffractometer at ISIS, Rutherford Apple-

ton Laboratory, UK. The data was analysed by Roger Johnson from the Claren-

don Laboratory, Oxford University. Due to the dynamics of the water molecules

in [Ni(pyz)2(H2O)2](BF4)2 a full quantitative refinement is difficult to obtain. A

LeBail [120] fit to Bragg peaks observed in the 1.5 K measurement is in good agree-

ment with the reflection conditions of the space group I4/mcm [Fig. 3.22(a)]. The

lattice parameters extracted are a = b = 9.8859(2) Å and c = 14.6625(4) Å, consis-

tent with the room temperature x-ray parameters (Table. 3.2). Reflections with a

large projection onto the c∗ reciprocal lattice vector was found to be broader than

the others and required an inclusion of a strain model when fitting. This represents

a degree of decoherence along the c-axis.

The sign of D in [Ni(D2O)2(pyz-d4)2](11BF4)2 was determined by fitting the

relative intensities of the magnetic diffraction peaks [Fig. 3.22(b)]. As the magnetic

69



Figure 3.23: Temperature dependence of the ordered moment in [Ni(D2O)2(pyz-
d4)2](11BF4)2.

intensity couldn’t be quantitatively scaled, the magnitude of the magnetic moments

were set to the theoretical, spin only value of 2µb. The scale of the magnetic phase

was then left to refine. The diffraction intensities in Fig. 3.22(b) are consistent

with magnetic moments pointing perpendicular to the z-axis. This is indicative of

easy-plane anisotropy. This is in excellent agreement with the sign of D obtained

from magnetometry measurements. The temperature dependence of the integrated

intensity of the [101] magnetic diffraction peak, which is proportional to the ordered

moment, is shown in Fig. 3.23. The data is very consistent with a transition to

long-range order at 3.0(2) K.

3.4.2 Discussion

[Ni(pyz)2(H2O)2](BF4)2 has been analysed using fields that can be reached us-

ing commercially available magnetometry and heat capacity measurement systems.

Magnetisation measurements have shown [Ni(pyz)2(H2O)2](BF4)2 to be quasi two-

dimensional antiferromagnet with J = 1.05(5) K. It exhibits easy-plane anisotropy

with D = +7.3(7) K and E = 0, consistent with the heat capacity data. The sign

of D is in excellent agreement with neutron scattering measurements. Susceptibil-

ity and heat capacity measurements also show a transition to long-range order at

Tn = 3.0(2) K. This has been confirmed using µ-SR and neutron scattering mea-

surements. The resultant phase diagram of [Ni(pyz)2(H2O)2](BF4)2 is shown in

Fig. 3.24. On cooling from high-temperatures in zero-field, the material develops

easy-axis anisotropy within the paramagnetic phase due to D, before the onset to

antiferromagnetic ordering at 3.0 ± 0.2 K. In an applied field, the powdered sam-
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Figure 3.24: Phase Diagram of [Ni(pyz)2(H2O)2](BF4)2. As the temperature is
lowered below 7.3(7) K the sample moves from a pure paramagnetic (PM) into an
easy-plane anisotropy dominated paramagnetic phase (PM-EP). As the temperature
drops further, the sample undergoes a transition to long-range order below 3.0(2) K
(AFM). On increasing the field, moments saturate for fields perpendicular to and
then parallel to the z-axis. The moments are fully saturated at ≈ 16 T (FM). Lines
are a guide to the eye.

ple passes through two critical fields corresponding to the saturation field for fields

within and perpendicular to the easy-plane.

The errors obtained in calculating the D-parameter from the behaviour of

the Schottky anomaly in heat capacity measurements are very large. This is due

to three things. Firstly, the Schottky anomaly is naturally a broad feature [24].

Further broadening is caused by the powdered nature of the sample. Lastly, in the

case of [Ni(pyz)2(H2O)2](BF4)2, the important low-field behaviour of the Schottky

anomaly is obscured by long-range ordering. Extrapolation of the observed peaks

with large errors towards zero causes a propagation of these errors through Eq. 2.8.

This leads to a very high error in the calculated value of D, making heat capacity

measurement unsuited to modelling the single-ion anisotropy of interacting S = 1

moments. On the other hand, magnetisation measurements have been successful at

separating the effect of J and D.

3.5 Summary

I have found that readily available magnetisation and heat capacity techniques are

sensitive to the energy scale of the SIA of Ni2+ S = 1 systems, though in powdered
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AFM systems it has been shown that their features can be masked by magnetic inter-

actions. However, by comparison with simulations, the effects of SIA and magnetic

interactions can be separated. Using these methods, I have been able to characterise

three compounds made up of isolated Ni2+ complexes; [Ni(3,5-lut)4(H2O)2](BF4)2,

Ni(SiF6)(H2O)(4-mepz)4 and Ni(H2O)2(acetate)2(4-picoline)2. Magnetometry and

heat capacity measurements have been very successful in obtaining the sign of D.

A check with ESR measurements have shown that the magnitude of the single-ion

anisotropy parameters obtained from lab-based methods are reasonably accurate.

Whilst there have been a few differences in the size of D and E between some mea-

surements, they are small. A confident decision about whether further single-crystal

or more specialist characterisation techniques are required can therefore be made.

The quasi-two dimensional [Ni(pyz)2(H2O)2](BF4)2 has also been success-

fully characterised using magnetisation measurements. It can modelled be using

Eq. 3.1, with J = 1.05(5) K, D = +7.3(7) K and E = 0 K. The SIA parame-

ters are consistent with heat-capacity measurements of [Ni(pyz)2(H2O)2](BF4)2 and

similar to those found for [Ni(3,5-lut)4(H2O)2](BF4)2. The J parameter is compa-

rable to other compounds with [Ni(pyz)2]2+ square planes [1, 13]. Susceptibility

and heat capacity measurements show that [Ni(pyz)2(H2O)2](BF4)2 orders antifer-

romagnetically at Tn = 3.0(2) K, in good agreement with muon spin relaxation and

elastic neutron scattering measurements. The sign of D has also been confirmed by

neutron scattering measurements.

The main issue with characterising systems of interacting S ≥ 1 ions is the

aforementioned competition between single-ion anisotropy and magnetic interac-

tions. Whilst magnetisation measurements are successful at decomposing the effects

of single-ion anisotropy and magnetic interactions, heat capacity measurements are

not. However, heat capacity measurements are still highly suited to mapping out

the field dependent behaviour of Tn. If the ordering temperature is significantly

far away from the Schottky anomaly, then theoretically the magnitude of D could

be obtained from heat capacity measurements. Further measurements on suitable

systems are required to confirm this however.

The structural dependence of the single-ion anisotropy for the compounds

in this chapter will now be discussed. Table. 3.2 and Table. 3.3 show that

[Ni(pyz)2(H2O)2](BF4)2 and [Ni(3,5-lut)4(H2O)2](BF4)2 contain slightly axially com-

pressed octahedra whereas Ni(H2O)2(acetate)2(4-picoline)2 and Ni(SiF6)(H2O)(4-

mepz)4 contain axially elongated octahedra. According to previous predictions, this

suggests that [Ni(3,5-lut)4(H2O)2](BF4)2 and [Ni(pyz)2(H2O)2](BF4)2 should be

easy-axis and Ni(H2O)2(acetate)2(4-picoline)2 and Ni(SiF6)(H2O)(4-mepz)4 should
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be easy-plane [34, 35]. This is not the case. The electronic properties of the co-

ordinated atoms that make up the Ni2+ octahedra also have a contribution to the

zero-field splitting. The easy-axis Ni(H2O)2(acetate)2(4-picoline)2 contain NiN2O4

octahedra whereas the other, easy-plane, compounds have NiN4O2 or NiN4OF en-

vironments. The magnetic moments seem to align in the direction of the nitrogen

atoms. Nitrogen atoms are less electronegative than oxygen and fluorine atoms [126],

suggesting moments prefer to point away from the most electronegative ligand. This

will be discussed in detail in the next chapter.
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Chapter 4

Towards the control of the

magnetic properties of Ni2+

chains.

4.1 Introduction

The aim of this chapter is to characterise NiF2(3,5-lut)4·H2O and the NiX2(3,5-lut)4

(lut = lutidine, C7H9N. X = Cl, Br, I and HF2) family to determine to what extent

the control of the magnetic properties of Ni2+ chains can be achieved. This will

make use of different bridging halide ions which causes structural changes between

the different members of NiX2(3,5-lut)4 and NiF2(3,5-lut)4·H2O. By linking this

change in structure and composition to any change in the magnetic properties, a

greater understanding of how to create bespoke magnetic systems can be achieved.

Copper- and nickel-halide pathways have already been shown to be able to mediate

magnetic exchange with varying magnitudes of J [1, 117, 127, 128]. These previous

efforts indicated changing magnetic behaviour linked to the halide ions. J. Schlueter

et al., studied the CuX2(pyzO)(H2O)2 (X = Cl,Br. pyzO = pyrazine-N,N’-dioxide,

C4H4N2O2) family made up of Cu-X-X-Cu chains bridged by pyzO molecules [127].

Table 4.1: Experimentally obtained magnetic parameters and unit cell lengths for
the NiX2(pyz)2 family. This table is adapted from Table. 3 in [1]

X Jpyz (K) JX (K) D K Ni-pyz-Ni (Å) NiX-X-Ni (Å)

Cl 0.49(1) <0.05 8.03(16) 7.0425(2) 10.7407(3)
Br 1.00(5) 0.26(5) 0 7.0598(2) 11.3117(3)
I <1.19 >1.19 0 7.057502(18) 12.25594(5)
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Table 4.2: Table showing which experimental techniques were used to study each
compound in this chapter. Red ticks correspond to measurements performed and
analysed by myself. Blue ticks represent measurements analysed but not performed
by myself. Pulsed-field measurements were performed by Jamie Manson, John
Singleton and Serena Birnbaum at the National High Magnetic Field Laboratory
(NHMFL), Los Alamos, USA. ESR measurements were performed by Jamie Manson
and Andrew Ozarowski at NHMFL, Tallahassee, USA.

Compound χ(T ) M(H) Cp(T ) ESR

NiF2(3,5-lut)4·H2O X
Ni(HF2)2(3,5-lut)4 X

NiCl2(3,5-lut)4 X X
NiBr2(3,5-lut)4 X X X
NiI2(3,5-lut)4 X X X X

Whilst the structures of the two compounds remained reasonably similar, it was

found that JBr = 4JCl. The bigger bromide ion clearly mediates the superexchange

interaction better than the chloride ion. J. Liu et al. showed that by increasing the

size of the halide ion increases the strength of magnetic interactions through Ni-X-

X-Ni pathways in Q2D systems. However, the distance between the Ni2+ ions also

increased from X = Cl→ I (Table. 4.1) which would also contribute to this change in

J . It also appeared that the single-ion anisotropy decreased as the size of the halide

ion increased and moved further away from the Ni2+ ion. However, this change could

not be studied in depth due to the stronger magnetic interactions within Ni-pyz

planes masking the effect of D. Therefore, NiF2(3,5-lut)4·H2O and NiX2(3,5-lut)4

were synthesised to investigate the effect of halide substitution on the magnetism

of spin-1 chains. Pyrazine is a well known mediator of magnetic exchange [1]. As

observed in the previous chapter, lutidine molecules create a very inefficient pathway

for magnetic exchange. Therefore replacing pyrazine with non-bridging lutidine

molecules creates quasi one-dimensional magnetic structures along Ni-halide-halide-

Ni chains in NiF2(3,5-lut)4·H2O and NiX2(3,5-lut)4. Magnetometry, heat capacity

and ESR measurements were made on NiF2(3,5-lut)4·H2O and NiX2(3,5-lut)4 to

determine the magnetic properties of these compounds. Table. 4.2 shows which

measurements were made on the compounds in this chapter.

4.2 Structure

Single crystal x-ray diffraction measurements of NiF2(3,5-lut)4·H2O were made by

Robert Williams and Sam Curley at The University of Warwick. Crystals with
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Figure 4.1: Room-temperature structure of NiF2(3,5-lut)4·H2O (a): Chains of Ni2+

ions (silver) are bridged by two F− ions (green) along the z-axis. H2O molecules
have been omitted for clarity. (b): Chains are separated in the xy plane by lu-
tidine molecules. (c): Unit cell of NiF2(3,5-lut)4·H2O. The red ring indicates the
structurally disordered oxygen atom from the water molecule. Lutidine and water
hydrogen atoms have been omitted for clarity.

size ∼ 100 µm were loaded into a Gemini R spectrometer and data taken at room

temperature. NiF2(3,5-lut)4·H2O is a tetragonal system in the P/4mcc space group.

Ni2+ ions chains are bridged via Ni-F-H2O-F-Ni pathways [Fig. 4.1(a)] with nearest

neighbour Ni-Ni distance 8.6399(2) Å along the crystal c-direction. The z-axis is

defined as being in this direction. The x and y directions are defined as the a and

b crystal directions respectively. The oxygen in the water molecule is structurally

disordered, as indicated in Fig. 4.1(a). The position of the water hydrogen atoms
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Figure 4.2: 100 K structure of NiX2(3,5-lut)4. (a) Layout of local environment
around each Ni2+ ion (silver) in NiX2(3,5-lut)4. (b) Lutidine molecules (carbon =
black) keep Ni-X-X-Ni chains well separated in the xy-plane. Lutidine hydrogen
atoms have been omitted for clarity. (c) Ni-X-X-Ni chains in NiX2(3,5-lut)4 (X=
Cl, Br, I = purple). Nickel ions in adjacent chains are offset in the z direction.
(d) Chains of Ni2+ ions are bridged by HF−2 ions (H = beige and F = green) in
Ni(HF2)2(3,5-lut)4.

could not be resolved. The chains are separated by lutidine molecules and arranged

in squares with 9.29750(13) Å between Ni2+ ions on adjacent chains [Fig. 4.1(b)].

The local environment around each Ni2+ ion is octahedral and compressed along

the z-axis (F-Ni-F) [Fig. 4.1(c)]. The equatorial Ni-N bonds are all 2.133(4) Å and

symmetric around the axial bond. Ni(3,5-lut)4 planes on individual Ni2+ sites are

rotated around the z-axis by ±22.5◦ relative to the x and y axis [Fig. 4.1(b),(c)].

This leads to no clear pathway for magnet superexchange between Ni2+ ions in the

xy plane. Therefore any significant superexchange interactions will likely be along

the z-axis.

Single crystal x-ray diffraction measurements of NiX2(3,5-lut)4 were per-
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Table 4.3: Unit cell parameters for NiX2(3,5-lut)4.

Compound a,b (Å) c(Å) space group

NiF2(3,5-lut)4·H2O 9.29750(13) 17.2798(3) P/4mcc
Ni(HF2)2(3,5-lut)4 11.1000(3) 11.7446(3) P4/nnc

NiCl2(3,5-lut)4 11.4902(9) 10.5512(11) P4/nnc
NiBr2(3,5-lut)4 11.7232(5) 10.1153(4) P4/nnc
NiI2(3,5-lut)4 12.0048(5) 9.9568(4) P4/nnc

Table 4.4: Bond lengths in NiX2(3,5-lut)4. NN Ni-Ni corresponds to the nearest
neighbour Ni-Ni distance along the Ni-X-X-Ni chains. For Ni(HF2)2(3,5-lut)4, the
Ni-HF2 distance is between the nickel ion and the adjacent fluorine ion. The HF2-
HF2 distance is between adjacent fluorines.

Compound Ni-X (Å) NN Ni-Ni (Å) X-X (Å) Ni-N (Å)

NiF2(3,5-lut)4·H2O 2.031(4) 8.6399(2) 4.578(9) 2.133(4)
Ni(HF2)2(3,5-lut)4 2.0108(12) 11.7446(3) 3.108 2.0922(11)

NiCl2(3,5-lut)4 2.4502(9) 10.5512(11) 5.651(2) 2.122(2)
NiBr2(3,5-lut)4 2.6170(4) 10.1153(4) 4.881(2) 2.121(2)
NiI2(3,5-lut)4 2.8292(4) 9.9568(4) 4.298(2) 2.123(3)

formed by John Schlueter and Yu-shen Cheng on the 15-ID-B beamline at the

Advanced Photon Source, Argonne, USA. Single crystals with size of the order

100 µm were measured at 100 K. The NiX2(3,5-lut)4 (X=Cl, Br, I, HF2) com-

pounds are tetragonal systems in the space group P4/nnc. Ni2+ ions are linearly

bridged along the z-axis via the two HF−2 [Fig. 4.2(b)] or the two halide ions [Fig.

4.2(c)]. In Ni(HF2)2(3,5-lut)4, the H-F-H ligands are linear along the Ni-HF2-HF2-

Ni axis. Non-bridging lutidine molecules keep the chains well separated [Fig. 4.2(d)]

and nickel ions in adjacent chains are offset from each other in the z direction.

Again, there are no clear pathways between adjacent nickel ions in the xy-plane,

and therefore it is likely that any dominant magnetic interaction will be through

the nickel-halide and nickel-HF−2 chains. The local environment around each Ni2+

ion is octahedral and elongated along the z-axis for X = Cl, Br, I and compressed

for Ni(HF2)2(3,5-lut)4. The nickel octahedra contains four nitrogen atoms from the

lutidine molecules and the two halide ions [Fig. 4.2(a)]. All four equatorial bonds

are the same length within each compound respectively. Hence the rhombohedral

anisotropy parameter E is expected to be zero [33] for all NiX2(3,5-lut)4.

The relevant structural and bond information for all NiX2(3,5-lut)4 are given

in Table 4.3 and Table 4.4. NiF2(3,5-lut)4·H2O has a different structure compared to

the other members of the NiX2(3,5-lut)4 family. Firstly, it contains water molecules

in the expected superexchange pathway. Secondly, along with Ni(HF2)2(3,5-lut)4,
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it has an axially compressed local octahedron around the nickel ion. This should

change the sign of D compared to the X = Cl, Br, I compounds as they contain

axially elongated local octahedra [34]. This is caused by an increase in the Ni-X bond

length from F→ I. However, the Ni-N bond lengths across the NiX2(3,5-lut)4 are all

very similar, making it easier to extract how the single-ion anisotropy changes due to

the substitution of the halide ion. Lastly, the trend along the NiX2(3,5-lut)4 family

is for the nearest-neighbour Ni2+-Ni2+ distance along the chain to decrease as the

size of the Halide ion increases. NiF2(3,5-lut)4·H2O does not follow this trend; it

has a much smaller nearest-neighbour Ni2+-Ni2+ distance compared to NiCl2(3,5-

lut)4. The increase in size of bridging halide ions have been shown to contribute to

an increase in the strength of magnetic interactions between nickel ions [1]. HF−2
has also been shown to be good mediator of magnetic exchange in nickel systems

[13, 96, 129].

The structures suggest that NiF2(3,5-lut)4·H2Oand NiX2(3,5-lut)4 can be

described using the Hamiltonian:

Ĥ = D
∑
i

Ŝz2
i + J

∑
〈i,j〉

Ŝ i · Ŝ j + J⊥
∑
〈i,j′〉⊥

Ŝ i · Ŝ j′ + µbµ0

∑
i

H · g · Ŝ i, (4.1)

where J is the nearest-neighbour magnetic exchange interaction between Ni2+ ions

within the same Ni-X-X-Ni chain and J⊥ is the exchange interaction perpendicular

to the chains. Angular brackets denote a sum over unique pairs of metal ions and

a primed index indicates an ion in a next to nearest chain, D is the single-ion

anisotropy parameter and the final term is the Zeeman splitting.

4.3 NiF2(3,5-lut)4·H2O

4.3.1 Magnetisation

Pulsed-field magnetisation measurements of powdered NiF2(3,5-lut)4·H2O show a

concave rise to saturation at ≈ 10 T [Fig. 4.3(a)]. The differential susceptibility

drops initially before a small hump at ≈ 6 T [Fig. 4.3(b)]. This indicates a ground

state crossing between the ms = 0 and ms = −1 energy levels and can be seen

as a slight flattening of the M(H) curve around 5 T. The position of the crossing

point is given by the midpoint of the peak differential shape in the gradient of

the differential susceptibility [Fig. 4.3(b)] and is at 5.7(5) T. The shape of the

differential susceptibility is indicative of an easy-plane D-only system with negligible
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Figure 4.3: (a) Low-temperature magnetisation and (b) differential susceptibility
measurements of NiF2(3,5-lut)4·H2O. A critical field indicating the ground-state
energy-level crossing is observed at µ0Hc = 5.7(5) T.

magnetic interactions. Using Eq. 2.2, the value of 5.7(5) T corresponds to a value

of D = +8.4(7) K.

4.4 Ni(HF2)2(3,5-lut)4

4.4.1 ESR

High frequency ESR spectra of powdered Ni(HF2)2(3,5-lut)4were measured at fre-

quencies of 203.2, 326.6 and 406.4 GHz and a temperature of 20 K. Resonances cor-

responding to four transitions are clearly observed in the data [Fig. 4.4(a)]. These

resonances were fitted to a D-only Hamiltonian, with the resulting parameters ex-

tracted: gxy = 2.23(2), gz = 2.16(2) and D = ±11.97(2) K. Frequency dependency

is unable to determine the sign of D in D-only powdered compounds [12]. There-

fore, a temperature dependant study at 321.6 GHz was performed [Fig. 4.4(c)].

The data shows an increase in the intensity of the low-field xy transition (β) as the

temperature decreases. This is due to an increased occupationof the ms = −1 state

at low temperatures. At the same time, the intensity of the high-field xy resonance
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Figure 4.4: (a) ESR spectra of Ni(HF2)2(3,5-lut)4 made at 20 K and frequencies
of 203.2, 321.6 and 406.4 GHz. Large resonances are observed in all three spectra
which were fitted using a D-only Hamiltonian. The obtained parameters were then
simulated in good agreement with the data. (b) The results of the fit to a D only
Hamiltonian are gxy = 2.23(2), gz = 2.16(2) and D = ±11.97(2) K, and the position
of all transitions are overlaid onto the resonances in good agreement. (c) Temper-
ature dependence of the 321.6 GHz Ni(HF2)2(3,5-lut)4 ESR spectra. The intensity
of the low-field xy transition (β) decreases as temperature increases whereas the
high-field transition (γ) increases. This is indicative of easy-plane anisotropy.
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(γ) decreases as temperature decreases due to a lowering of the occupation of the

ms = 0 state. This shows that Ni(HF2)2(3,5-lut)4 exhibits easy-plane anisotropy.

Using Eq. 4.12 in Ref. [34], the value of the spin–orbit splitting parameter is

λ = −342 K for Ni(HF2)2(3,5-lut)4. This is of the same order as the expected value

of -454 K for Ni2+ ions. However, the sign of D is different to that which is expected

from the axially compressed structure [34]. In conclusion, the ESR data indicates

that Ni(HF2)2(3,5-lut)4 contains easy-plane anisotropy with D = +11.97(2) K,

gxy = 2.23(2) and gz = 2.16(2). The magnitude of magnetic interactions in

Ni(HF2)2(3,5-lut)4 has currently not been determined.

Along with Ni(HF2)2(3,5-lut)4, the easy-plane anisotropy exhibited in

NiF2(3,5-lut)4·H2O isn’t consistent with what is predicted in Ref. [34]. This sug-

gests that when modelling single-ion anisotropy, it is necessary to not just take the

position of atoms around magnetic ions, their respective electronic properties should

also be considered. This will be discussed further in Section 4.8.

4.5 NiCl2(3,5-lut)4

4.5.1 Magnetometry

Pulsed-field magnetisation measurements of powdered NiCl2(3,5-lut)4 show a con-

cave rise to a broad saturation point [Fig. 4.5(a)]. The dM/dH data [Fig. 4.5(b)] is

consistent with the simulations for an S = 1 easy-plane system with negligible mag-

netic interactions (Fig. 2.4). There is a weak bump in dM/dH at Hc = 6.6(5) T

[Fig. 4.5(b)] which is obtained from the position of the trough in the double differen-

tial of the differential susceptibility. This feature is due to the energy-level crossing

in easy-plane spin-1 systems and indicates that D > 0 for NiCl2(3,5-lut)4. Using

Eq. 2.2, the position of the crossing point corresponds to D = +9.6(7) K.

This energy scale is also observed in the susceptibility data. Powdered sam-

ples of NiCl2(3,5-lut)4 were zero-field cooled to 1.8 K before susceptibility mea-

surements were made at 0.1 T on warming to 300 K. The data rises towards low

temperature before it appears to flatten out at ≈ 2 K [Fig. 4.6(a)]. The inverse sus-

ceptibility was fitted to a Curie-Weiss model with a small, temperature independent

diamagnetic term χ0 (inset to Fig. 4.6). The parameters extracted are g = 2.13(1),

θw = +0.23(7) and χ0 = −1.46(7) × 10−9 m3mol−1. The data deviates from the

Curie-Weiss model below 20 K, strongly suggesting that there is an energy scale

acting on the spins of the order of 10 K. Susceptibility measurements have been

shown to be accurate at determining the magnitude of the single-ion anisotropy of

D-only systems, especially if the sign of D is already known. The data was fitted to
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Figure 4.5: (a) Pulsed-field magnetisation, (b) differential susceptibility and
d2M/dH2 measurements of powdered NiCl2(3,5-lut)4 at T = 0.63 K data. Hc

indicates the energy-level crossing point described in Fig. 2.4(c)

a D-only susceptibility model [32] and the small χ0 obtained from the Curie-Weiss

fit. The parameters obtained were D = +10.06(1) K, g = 2.16(1) and. The

value of D is within the error of the magnitude obtained from the position of the

hump in the magnetisation measurements. Both magnetometry measurements are

in agreement that NiCl2(3,5-lut)4 is a D-only easy-plane system of isolated Ni2+

moments with D = 10.06(1) K and a powder averaged g = 2.16(1).
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Figure 4.6: DC susceptibility measurements made at an applied field of 0.1 T using
a Quantum Design MPMS SQUID of NiCl2(3,5-lut)4. Inset: χ−1 (T ) for NiCl2(3,5-
lut)4 showing the deviation from the Curie-Weiss model at T ≈ 20 K.

4.6 NiBr2(3,5-lut)4

4.6.1 ESR

Low-temperature ESR data of powdered NiBr2(3,5-lut)4 [Fig. 4.7(a)] between 197

and 326.4 GHz shows peaks corresponding to resonances where the applied magnetic

field is parallel to the z axis and xy plane. The resonance marked with * is likely

due to an impurity or end-chain effects. The resonances observed in all the ESR

spectra are plotted in Fig. 4.7(b) and were fitted to a D-only Hamiltonian. The

extracted parameters are gxy = 2.17(2), gz = 2.14(3) and D = +6.4 ± 1.2 K.

Some transitions occur within the same linewidth, such as ζ and α in the 208 GHz

spectra. It is not possible to accurately determine the position of these resonances

and as such these were not included in the fit. They are shown as the purple

points in Fig. 4.7(b). The expected position of resonances with these parameters

are overlaid with the observed resonances and found to be in good agreement. A

Simulations using these parameters and a frequency of 326 GHz is plotted in Fig.

4.7(b), consistent with the data. The sign of D is extracted from a temperature

dependent study [Fig. 4.7(c)] which shows the low-field xy-transition (β) increasing

in intensity as the temperature decreases. This is due to a more populated ms = −1

state and indicates that D > 0 for NiBr2(3,5-lut)4. As gxy > gz, this is another

indication of easy-plane anisotropy [34]. The calculated value of λ = −427 K is

consistent with the expected value for nickel complexes.
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Figure 4.7: (a) ESR measurements of powdered NiBr2(3,5-lut)4 at 5 K. All observed
resonances are are labelled depending on which branch they belong to in the field-
frequency plot in (b). The resonance marked with * is of an unknown origin but is
likely to be an impurity. A Simulation at 326 GHz using the parameters extracted
from a D only fit was added and is consistent with the data. (b) Fitting the
resonances in all the ESR spectra of NiBr2(3,5-lut)4 to a D-only Hamiltonian. (c)
Temperature dependent ESR spectra of NiBr2(3,5-lut)4 at 326 GHz showing the
increase in the intensity of the low-field xy transition as temperature drops. This
indicates that D > 0 for NiBr2(3,5-lut)4.
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4.6.2 Magnetometry

Figure 4.8: (a) Low-temperature magnetisation and (b) differential susceptibility
measurements of powdered NiBr2(3,5-lut)4.

Pulsed-field magnetisation [Fig. 4.8(a)] measurements of powdered NiBr2(3,5-

lut)4 rise towards a broad transition at the saturation point. The differential sus-

ceptibility [Fig. 4.8(b)] shows a peak at Hc1 = 2.3(2) T and the magnetisation

saturates at Hsat ≈ 10 T. Due to the finite temperature at which the measurement

was made, it is very difficult to pinpoint precisely where the magnetisation satu-

rates. Hsat is estimated to be the field at which the magnetisation reaches within

3% of the fully saturated value. This occurs at Hsat = 10.7(3) T. The differential

susceptibility is similar to other easy-plane Ni2+ systems which contain magnetic

interactions (Fig. 3.19). There is no indication of a spin-flop which indicates that

D > 0. Therefore, using the easy-plane description of the critical fields (Eq. 2.3

and Eq. 2.4) and g=2.10(1), obtained from a Curie-Weiss (CW) fit to χ−1 (T ) (see

below), values of J = 0.8(1) K and D = +6(1) K are obtained.

DC susceptibility data of powdered NiBr2(3,5-lut)4 show [Fig. 4.9(a)] an

increase in χ(T ) as the temperature is lowered. The inverse susceptibility data
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Figure 4.9: (a) Susceptibility measurements of powdered NiBr2(3,5-lut)4. Whilst a
Borrás-Almenar fit models the data well, the parameters do not agree with other
experimental techniques. As it has been shown that many combinations of J and
D can give the same fit [13], simulations of the Borrás-Almenar and D-only model
using the parameters from the magnetisation measurements were overlaid. There is
no agreement with the data and the simulations. (b) Inverse susceptibility measure-
ments of NiBr2(3,5-lut)4 show a good agreement with a Curie-Weiss model down to
low temperatures. This can be seen more clearly in (c) where there is a deviation
from a straight line in χT below ≈ 30 K.

shows paramagnetic behaviour down to very low temperatures and was fitted to a

Curie-Weiss model [Fig. 4.9(b)]. The parameters obtained are g = 2.10(1) and

θw = −0.17(16) K. There is also a small temperature independent diamagnetic

component with χ0 = −2.14(3) × 10−9 m3mol−1 [Fig. 4.9(c)]. The data can be

modelled using the Borrás-Almenar (B-A) model for S = 1 AFM chains with easy-

plane anisotropy [52]. The fitted parameters are J = 1.24(3) K and D = +0.7(3) K.

Though the J parameter is in reasonable agreement with value extracted from the

magnetisation measurements, the magnitude of the D parameter is not. It has been

shown with this model that numerous combinations of values of J and D can give
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an equally good fit [13]. Therefore, the parameters obtained from the magnetisation

measurements were used to simulate the expected χ(T ) [Fig. 4.9(a)] using the B-A

model. As the magnitude of D was found to be more than J from magnetisation

measurements, it is possible that the low fields used cannot pick up the effect of J .

Therefore, a simulated D-only model using the parameters from the magnetisation

measurements has also been added. The g-factor used in the simulations came from

the CW fit [Fig. 4.9(b)]. None of the simulations model the data well.

It has been shown that in the limit of uniform chains the BA model does not

agree with Quantum Monte Carlo simulations by Yamamoto and Miyashita, who

found that the peak in susceptibility decreases in temperature as the magnitude of

D increases [130]. This contradicts the prediction by Borrás-Almenar et al. Fur-

ther calculations by Nakano et al. confirmed the results obtained by Yamamoto and

Miyashita, and also found that the BA model, whilst accurate for D = 0, is incorrect

for D 6= 0 [131]. Use of the BA model to determine the D parameter from suscep-

tibility data of one-dimensional antiferromagnets have been unsuccessful [132, 133]

and most other uses of the model have fixed D = 0. Theresult of the fit to the

susceptibility data of NiBr2(3,5-lut)4 confirms that the BA model is unsuitable to

be used to charactise S = 1 antiferromagnets with a significant single-ion anisotropy

term in the Hamiltonian. The model proposed by Yamamoto and Miyashita, and

Nakano et al. is also unable to be used in the analysis of S = 1 chains in powdered

form as χx is yet to be calculated [130, 131]. Due to this, and the accuracy of ESR

when determining the single-ion anisotropy parameters, I will use the parameters

obtained from the ESR measurements.

4.7 NiI2(3,5-lut)4

4.7.1 Introduction

NiI2(3,5-lut)4 has been found to an almost ideal realisation of a Heisenberg antifer-

romagnet and contains strong magnetic interactions. Using ESR and magnetometry

measurements, the parameters J = 17.5(1) K and |D| = 0.06(4) K are extracted.

Evidence of an energy gap (∆) in magnetometry and heat capacity measurements

suggest that NiI2(3,5-lut)4 is a spin-1 chain in the Haldane phase with ∆ = 6.3(1) K.

This is consistent with the theoretical prediction for the magnitude of the param-

eters obtained [4]. ESR and magnetomotry measurements also show evidence of

end-chain excitations which act like isolated paramagnetic spin-1/2 moments.
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4.7.2 ESR

Figure 4.10: Frequency dependent ESR measurements of powdered NiI2(3,5-lut)4

at (a) 30 K and (b) 3 K. The positions of the single resonance at 30 K has been
modelled with a linear fit (see text). In (b), the blue and green resonances are
due to ms = ±1 and ms = ±2 transitions within the triplet state respectively. (c)
Resonances observed in the 3 K data are plotted with linear fits. The red resonances
are unknown transitions (see text).(d) Energy level diagram of a spin-1 AFM chain
in the Haldane phase showing the allowed and forbidden ESR transitions.

High temperature, frequency dependent ESR measurements of powdered
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NiI2(3,5-lut)4 at 30 K [Fig. 4.10(b)] show a single resonance which, using a lin-

ear fit, extrapolates to ν = 1.3(9) GHz in zero-field. As 30 K is much higher than

∆, the size of the energy gap extracted from magnetometry and heat capacity data

(see below), this resonance is attributed to transitions within an excited triplet state

in the Haldane model. In the Haldane model, transitions between the singlet ground

state and the excited triplet state are forbidden as they violate momentum conser-

vation [20] [Fig. 4.10(a)]. Transitions have been observed in other compounds, but

these contain staggered magnetic field [72, 134, 135]. They are not expected or

observed in the ESR spectra of NiI2(3,5-lut)4 as all the Ni2+ sites are equivalent.

If the gapped behaviour observed in the magnetisation measurements below were

due to a large single-ion anisotropy, this would have been observed in the ESR mea-

surements. They are not and therefore the gapped behaviour in NiI2(3,5-lut)4 is

described using a Haldane model. The zero-field frequency ν = 1.3(9) GHz corre-

sponds to a single ion anisotropy of |D| = hν/kb = 0.06(4) K, and the gradient of

the linear fit of these transitions gives a powder averaged g = 2.168(1). The sign of

D cannot be determined from this measurement.

Low-temperature, frequency dependent ESR measurements of powdered

NiI2(3,5-lut)4 at ≈ 3 K [Fig. 4.10(c)] show that this resonance splits into up to

three different transitions. This could be due to a g-factor anisotropy or the small

single-ion anisotropy resolving at low temperatures. Spin-1/2 moments at the end

of chains may also contribute to resonances in the range 2 < g < 2.2 as the ESR

transition of S = 1/2 spins lie on top of those from S = 1 spins with negligible D.

The 3 K transitions are also much lower in intensity than the 30 K transitions due

to a decreased occupancy of the excited triplet state. Other resonances are caused

by the half field transition within the first excited triplet state [Fig. 4.10(d)], whilst

there are three resonances in the 140-210 GHz range which cannot be attributed to

a particular transition. These may be due to an S = 1 impurity with D ≈ 4 K.

4.7.3 Magnetometry

Pulsed-field magnetisation measurements of NiI2(3,5-lut)4 [Fig.4.11(a)] shows a small

initial rise to a flat plateau at low fields before a kink at ≈ 5 T. Above the kink,

there is a sharper, approximately linear rise until close to the saturation point where

the data shows a concave shape indicative of low-dimensionality [123]. The low-field

magnetisation of NiI2(3,5-lut)4 in the range 0 ≤ µ0H ≤ 7 T was also studied using

a QDMPMS SQUID [Fig.4.12(b)]. The initial rise in the magnetisation towards a

plateau between 2 and 4 T is recreated. The kink at 5 T is also observed. This

low-field behaviour is indicative of an energy gap. From the analysis of the ESR
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Figure 4.11: (a) Low-temperature magnetisation and (b) differential susceptibility
measurements of NiI2(3,5-lut)4. See text for an explanation of the critical fields.

above, this energy gap is attributed to a Haldane gap. This is located at the mid-

point of rise in dM/dH, which corresponds to the peak in d2M/dH2 and occurs at

H∆ = 4.4 ± 0.2 T. This is taken to be the point at which the Haldane gap has

been closed by the magnetic field [62, 67–70, 75]. As ESR reveals D ≈ 0, the size of

the gap will be similar for all orientations of the crystal with respect to the applied

magnetic field [70]. The size of the Haldane gap is therefore ∆ = 6.4± 0.6 K.

At the lowest temperatures, there is a concave rise to a low-field plateau,

which is due to the paramagnetism of S = 1/2 moments at the end of chains

[81]. These occur due to the Haldane spin chains being within the Valence Bond
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Figure 4.12: (a) DC susceptibility measurements of powdered NiI2(3,5-lut)4 mod-
elled with Eq. 4.3 over the whole data range. (b) Quasi-static SQUID magnetisa-
tion measurements of powdered NiI2(3,5-lut)4. The lowest temperature data set has
been fitted with Eq. 4.2 in the field range 0 ≤ µ0H ≤ 2 T. [Inset]: dM/dH and
d2M/dH2 of the 0.5 K data showing the field at which the Haldane gap closes.

Solid state described in section 1.4.2. If the chain is very short, then the spin-1/2

moments at either end can interact with each other through the chain. However,

this behaviour is not observed in the ESR measurements and therefore I assume

that the chains are long enough that the end-chain spins are isolated. To verify that

the concave rise is due to S = 1/2 end chain spins and not S = 1 impurities, the
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region below 2 T was fitted to the following model containing an S = 1/2 and an

S = 1 Brillouin function:

M(H) = N1/2M1/2B1/2 +N1M1B1. (4.2)

Here, N1/2 and N1 are the proportion of free S = 1/2 and S = 1 spins, M1/2 and

M1 are the saturation fields for spin-1/2 and spin-1 paramagnets, and B1/2 and B1

are the Brillouin functions for spin-1/2 and spin-1 paramagnets [24], respectively.

The resultant fit gives the parameters N1/2 = 0.0253(2) and N1 = 0. This confirms

that the end-chain spins in NiI2(3,5-lut)4 are S = 1/2 moments, as expected via the

valence bond solid model [78, 80].

The differential susceptibility of the pulsed-field measurements show two crit-

ical fields [Fig. 4.11(b)], the first one at H∆ = 4.3(1) T (∆ = 6.3(1) K), which

is the point at which the Haldane gap has been closed by the magnetic field. The

second critical field HJ = 48.0(1) T occurs when the moments are fully saturated

by the applied magnetic field. As NiI2(3,5-lut)4 has negligible single-ion anisotropy,

HJ is a direct measure of the magnitude of J (See Hsat in Eq. 2.4). Using Eq. 2.4,

a value of J = 17.5(1) K is calculated. Using the value of D from the ESR mea-

surements, the ratio |D/J | ∼ 10−3 is consistent with NiI2(3,5-lut)4 being in the

Haldane phase [4].

DC Susceptibility measurements of powdered NiI2(3,5-lut)4 [Fig. 4.12(a)] ex-

hibits a large, broad peak at 20 K, indicating the build-up of short range correlations.

At temperatures below the peak the susceptibility drops towards zero until ≈ 2 K

where there is an upturn due to end-chain spins [64, 70, 136]. This is expected due

to the powdered nature of the sample. From the analysis of the ESR data, D � J

and the data can be fitted to the following model with two contributions

χ = 2xχFS + (1− x)χchain. (4.3)

Here, χchain is the susceptibility of Heisenberg antiferromagnetic chains for

various spin values from the Padé approximation derived by Law et al., and includes

a term to account for ∆ [51]. χFS is a Curie-Weiss term that accounts for the free

S = 1/2 spins. Eq. 4.3 models both the high and low temperature regimes of the

data very well [Fig. 4.12(b)], with the parameters J = 18.4(1) K, ∆ = 7.44(1) K

and x = 0.0169(1) extracted, reasonably consistent with the parameters extracted

from the M(H) measurements.
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Figure 4.13: (a) Zero-field heat capacity measurements of powdered NiI2(3,5-
lut)4 pressed into a pellet show a large and broad hump due to the lattice con-
tribution at high temperatures. This was fitted to a model with one Debye and
three Einstein modes over the range 10 ≤ T ≤ 300 K. (b) Magnetic heat capacity
of NiI2(3,5-lut)4 at a different fields in the range 0 ≤ T ≤ 9 T.

4.7.4 Heat capacity

Heat capacity measurements of powdered NiI2(3,5-lut)4 pressed into a pellet exhibits

a large, broad peak in the Cp/T zero-field data at ≈ 45 K [Fig. 4.13(a)]. This occurs

due to phonons and is modelled using one Debye mode and three Einstein modes.

The best lattice fit was over the range 10 ≤ T ≤ 300 K. The parameters of the

fit is shown in Table. 4.5 which was subtracted from the total heat capacity. The

resultant low-temperature magnetic heat capacity of NiI2(3,5-lut)4 [Fig. 4.13(b)]

show a peak appearing at T = 0.43(1) K for µ0H ≥ 7.5 T (Fig. 4.13). Though it is
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Table 4.5: Lattice fit parameters for NiI2(3,5-lut)4 obtained from modelling high-
temperature zero-field heat capacity data.

Ad 63(4) K

θd 68(2) K

Ae1 182(4) K

θe1 118(3) K

Ae2 159(5) K

θe2 252(8) K

Ae3 304(6) K

θe3 833(17) K

quite broad, it is attributed to a transition associated with field-induced long-range

order. This feature is further evidence of an energy gap and that NiI2(3,5-lut)4 lies

in the Haldane phase [6, 70, 71]. The broadness of the peak is likely to be caused

by the small single-ion anisotropy in NiI2(3,5-lut)4 resolving at the highest fields.

The peak due to the onset of long range order is also located at approximately the

same temperature for field sweeps in the range 7.5 ≤ µ0H ≤ 9 T. This kind of

behaviour has been observed in NDMAP [6, 71, 72] which is another spin-1 AFM

chain in the Haldane phase. The peak then drops out of the temperature range

of the heat capacity probe (≈ 0.4 K) for µ0H ≤ 7 T. There is a sharp drop in

the magnitude of Cmag as the field decreases below 5 T, indicating that indicating

that the Haldane gap is in the range 4 < ∆ < 5 T. This is consistent with the

magnetometry measurements.

4.7.5 Discussion

NiI2(3,5-lut)4 has been shown to be an almost ideal spin-1 Heisenberg antiferromag-

netic chain within the Haldane phase. The appearance of the peak in a heat capacity

above 7.5 T is evidence of the closing of the Haldane gap, though the peak moves out

of the temperature range of the probe for µ0H ≤ 7 T. However, the position of the

kink in the magnetisation measurements gives the size of the gap as ∆ = 6.4(6)6 K.

The strength of the intra-chain magnetic interaction extracted is J = 17.5(2) K.

Theoretical calculations predict that the ratio ∆/J = 0.41191 for isotropic S = 1

chains [51], and the ratio ∆/J = 0.36(4) obtained for NiI2(3,5-lut)4 is within 15%

of the predicted value. Magnetometry measurements also show features associated

with free spin 1/2 moments at the end of chains. By fitting to a Brillouin function,

2.53(2) % of the saturation magnetisation is due to these end chain spins. The limit

of D < 0.1 K obtained from high-field ESR measurements gives |D/J | < 5.7×10−3,
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which is smaller than that of CsNiCl3 which has the ratio |D/J | < 8.9× 10−3 [137].

Though the value of |D/J | = 2 × 10−4 is smaller for AgVP2S6 [138], the much

larger magnitudes of J and D make AgVP2S6 a poor choice for probing the Hal-

dane phase with commercially available lab-based equipment. This suggests that

NiI2(3,5-lut)4 can be considered to be one of the most isotropic S = 1 Heisenberg

AFMs currently known. Most other Haldane spin-1 chains currently known contain

sizeable single-ion anisotropy [139]. NiI2(3,5-lut)4 is therefore an excellent candi-

date for new areas of experimental research into the near-ideal Haldane phase. This

is due to the flexibility of coordination chemistry, in which constituent parts can

be swapped almost at will, and the low fields required to accurately characterise

this compound. Transition metal - doped halide superexchange pathways have al-

ready been shown to induce Mott (for H = 0) and Bose (for H > 0) glass phases

and a possible quantum Griffiths phase in the Br-doped quantum paramagnet DTN

[140, 141]. As will be seen in the next chapter, halide substitution has been used to

experimentally study magnetic exchange disorder in quasi two-dimensional S = 1/2

antiferromagnets. As the other members of the NiX2(3,5-lut)4 family do not lie in

the Haldane phase, one can use NiI2(3,5-lut)4 to test theories on bond disorder be-

tween magnetic sites parallel and perpendicular to the spin-chain [73]. Introducing

a second non-bridging ligand is likely to break the axial symmetry, introducing an

E term into the Hamiltonian. This can be used to investigate the predictions of

quantum phase transitions that occur due to rhombic-type single-ion anisotropy in

Haldane spin chains [142].

4.8 Summary

All the members of the NiX2(3,5-lut)4 family, apart from X = I which is al-

most Heisenberg-like, and NiF2(3,5-lut)4·H2O have been shown to contain easy-

plane single-ion anisotropy. NiBr2(3,5-lut)4 and NiI2(3,5-lut)4 also contain signif-

icant magnetic interactions between adjacent Ni ions along the Ni-X-X-Ni chains

(Table. 4.6). ESR suggests that Ni(HF2)2(3,5-lut)4 contains easy-plane single-ion

anisotropy with D = +11.97(2) K and magnetometry data indicate that NiF2(3,5-

lut)4·H2O is a D-only system with a magnitude of D = +8.4(7) K. Magnetom-

etry data suggests that NiCl2(3,5-lut)4 contains negligible magnetic interactions

with D = +9.6(2) K. ESR and magnetisation measurements are consistent with

NiBr2(3,5-lut)4 containing both J = 0.8(1) K and D = +6.4(1.2) K. ESR, mag-

netisation and susceptibility show that NiI2(3,5-lut)4 is a spin-1 AFM chain in the

Haldane phase with D = +0.6(4) K, J = 17.5(1) K and ∆ = 6.3(1) K. The
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Table 4.6: Experimentally derived parameters for NiX2(3,5-lut)4.

Compound J (K) D (K)

NiF2(3,5-lut)4·H2O ≈ 0 8.4(7)

Ni(HF2)2(3,5-lut)4 - 11.97(2)

NiCl2(3,5-lut)4 ≈ 0 +10.06(2)

NiBr2(3,5-lut)4 0.8(1) +6.4(1.2)

NiI2(3,5-lut)4 17.5(1) ±0.06(4)

very small magnitude of D compared to J makes NiI2(3,5-lut)4 one of the most

Heisenberg-like S = 1 AFM chains in the Haldane phase (Fig. 1.3).

There are two trends linking the structures and the magnetic properties

of NiX2(3,5-lut)4. Firstly, there is an increase in J as adjacent nickel ions move

closer together and the size of the bridging ion increases. However, NiF2(3,5-

lut)4·H2O doesn’t follow this behaviour as nickel ions are much closer together than

NiCl2(3,5-lut)4 but contains no significant J . This can partly be explained by the

water molecule in between the fluorine ions inhibiting magnetic interactions. This

is observed in the compounds in the previous chapter that all contain water ligands

which appear to inhibit magnetic exchange. In NiX2(3,5-lut)4, as the ionic radii of

X increases, the adjacent nickel ions within the chains get closer together. In the

quasi two-dimensional NiX2(pyz)2 however, the nickel ions get further apart as the

ionic radius increases. Both families show increasing strength of magnetic interac-

tions through the Ni-X-X-Ni linkages as the size of X increases. This suggests that

the size of the bridging ion has a more significant contribution to the strength of

the superexchange interaction than the distance between Ni2+ ions.

The second trend is the decrease in the magnitude of D as the size of the

halide ligand increases (Fig. 4.14). The halide ligand also moves further away from

each Ni2+ ion as the size of the halide ion increases. A previous study investi-

gated various Ni2+ compounds with the octahedra NiN6, NiN4N’2, NiN4O2 and

NiN2O2O’2 (the accent represents a ligand from a different donor set) in an attempt

to study how D changed with local structure. It was found that the weakening of

axial ligand’s crystal field and therefore an elongation of the axial bond made D

more positive, whilst a compression turned D more negative [35]. An experimen-

tally calculated quantitative dependence of D on the structure of Ni2+ octahedra

was obtained which was roughly linear through approximately zero (D = 0 for sym-

metric octahedra). The behaviour of the the NiX2(3,5-lut)4 family does not follow

this behaviour. This is due to the different ligands involved in NiX2(3,5-lut)4. The

model may hold if the composition of the octahedra is kept constant and the bond
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Figure 4.14: (a) Effect of bond lengths in the NiX2N4 octahedra in NiX2(3,5-lut)4

on the magnitude of the single-ion anisotropy parameter D. DNi−X is the Ni-
halide bond length and DNi−N is the Ni-N bond length. The y axis is positioned at
DNi−X/DNi−N = 1 which corresponds to a symmetric local environment around the
Ni2= ion. The previously published structural and D parameters of NiCl2(pyz)2 [1],
[Ni(HF2)(pyz)2](SbF6)2 [13] and [Ni(HF2)(3-Clpy)4](BF4)2 [10] have been used. (b)
Effect of the electronegativity difference between the halide ions and the N atoms
(Ee) has on D in NiX2N4 octahedra. NiI2(3,5-lut)4 has been set at DNi−X/DNi−N +
aEe = 1, where a = 0.875 is a calibration factor (see text).
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lengths are changed. For example, NiCl2(3,5-lut)4 has a more elongated octahedra

compared to NiCl2(pyz)2 and has a bigger magnitude of D (Fig. 4.14). However,

the structure dependence of D for NiN4F2 octahedra is not consistent. Thus the

prediction that an axial ligand with a strong (weak) crystalline-electric field causes

a negative (positive) value of D [34] appears to be incorrect in this case.

Along with the results of the previous chapter for NiN4O2, NiN2O4 and

NiN4OF octahedra, this suggests that the moments on the nickel ions may prefer to

point away from the most electronegative ligand. For NiX2(3,5-lut)4, this explains

why octahedra with fluorine and chlorine ions, which are more electronegative than

nitrogen [126], are easy-plane. However, bromine and iodine are less electronegative

than nitrogen but NiBr2(3,5-lut)4 hasD > 0 and NiI2(3,5-lut)4 is almost Heisenberg-

like. Therefore, the electronegative argument doesn’t fully explain the behaviour of

NiBr2(3,5-lut)4 and NiI2(3,5-lut)4. To further investigate this, an electronegativity

term aEe was added to the x-axis in Fig. 4.14(a). Ee = EX −EN is the difference in

the Pauling electronegativity values of the halide ions and the nitrogen atoms in the

NiX2N4 octahedra. The constant a = 0.875 was calibrated by setting NiI2(3,5-lut)4

to DNi−X/DNi−N + aEe = 1. This is due to NiI2(3,5-lut)4 being almost Heisenberg-

like. The resultant graph is shown in Fig. 4.14(b). The X = Cl, Br, I data shows

an approximately linear relationship between DNi−X/DNi−N + aEe and D. This

indicates that there is a mixture of crystal field and electronegative effects that

both contribute to the single-ion anisotropy in six-coordinate Ni2+ compounds.

However, the X = F data does not follow a discernible trend. This may be

due to the different structures that Ni-F compounds have compared to the other

Ni-halide compounds. The size of the F− ion means that undesired molecules may

enter into the crystal, such as the water molecule in NiF2(3,5-lut)4·H2O. Also, the

chemical process used to process the Ni-F compounds can introduce HF2 molecules

instead of F− ions. The effect that HF2 and the additional molecules has on D may

be more complicated than the simplistic model based on NiF2N4 octahedra. More

measurements on suitable compounds are required to explore this further.
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Chapter 5

Effect of magnetic exchange

disorder in a quasi-two

dimensional Cu2+

antiferromagnet

5.1 Introduction

This aim of this chapter is to investigate the effect of random exchange strength in a

quasi two-dimensional (Q2D) spin-1/2 antiferromagnet. Bond-disorder in insulating

magnetic systems reduces the connectivity of the lattice, leading to a percolative

phase transition beyond which the system is broken up into small finite clusters.

Classically, the percolation transition is coupled to the magnetic transition (de-

struction of long-range order), but in quantum systems the progressive reduction

in lattice connectivity enhances quantum fluctuations. In one-dimensional magnetic

systems an infinitesimally small amount of disorder is required to destroy long-range

order. However, the Hamiltonian of the two dimensional antiferromagnet is more

robust to the onset of long-range order, enabling the study of these quantum effects.

For interacting S = 1/2 moments on square lattices, there are currently two theories

which predict the behaviour of the ground state as bond disorder increases. The

first, which is based on numerical calculations, suggests that the ground state of the

system is stable until the percolation limit is reached. Therefore, disorder has re-

duced relevance on quantum Heisenberg models with a dimensionality D > 1 [110].

The alternative theory predicts multicritical points that separate the magnetic tran-

sition from the percolation transition, introducing a quantum phase transition and
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Figure 5.1: Decomposition of an antiferromagnetic square lattice into dimer (D -
light red) and ladder (L - light blue) bonds.

quantum disordered phase [109]. This occurs due to inhomogeneous bond disorder.

If a square lattice is decomposed into dimer and ladder (inter-dimer) bonds (Fig.

5.1), with the number of dimer bonds Pd and latter bonds Pl in the lattice, then

homogeneous bond disorder occurs for Pd = Pl whereas inhomogeneous disorder

happens when Pd 6= Pl. Inhomogeneous bond disorder leads to strongly fluctuat-

ing quantum states, such as dimer singlets, which significantly enhance quantum

fluctuations. This destroys long-range order before the percolation limit is reached,

and may lead to a quantum Griffiths phase. The Griffiths phase leads to arbitrarily

large magnetically ordered regions formed within the paramagnetic phase at T > Tn

[143].

Due to the flexibility of coordination polymer chemistry, bond disorder has

been realised by doping with different halide ions within the superexchange path-

way. Previous measurements on Cu2+-halide and Ni2+-halide superexchange path-

ways have indicated that substituting different halide ions will change the strength

of magnetic interactions between the transition metal ions (see chapter 4 and Ref.

[1, 127]). Therefore, by randomising the proportion of chlorine and bromine atoms

in the unit cell, there are two or more possible values of J between adjacent Cu2+

ions. Over a whole system of interacting Cu2+ ions, it is expected that this will in-

troduce magnetic exchange disorder into the system. This procedure has been used

in the studies of bond disordered compounds including the S = 1/2 AFM chain
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Table 5.1: Relevant structural parameters for (QuinH)2CuBr4·2H2O [2] and
(QuinH)2CuCl4·2H2O [3].

Compound (QuinH)2CuBr4·2H2O (QuinH)2CuCl4·2H2O

Crystal System Monoclinic Monoclinic

Space group C2/c C2/c

a (Å) 12.3323(7) 11.815(2)

b (Å) 9.7972(6) 9.837(2)

c (Å) 18.6504(11) 18.311(4)

Cu-X1 (Å) 2.3469(4) 2.2622(18)

Cu-X2 (Å) 2.4118(4) 2.2174(11)

Cu(py)2(Cl1−xBrx)2, where it was found that an increase in disorder induces a de-

crease in Tn and the ordered moment m0, which is the opposite of what is prediction

from mean-field chain theory [144]. A Bose glass phase was discovered in the mildly

frustrated quantum magnet (C4H12N2)Cu2(Cl1−xBrx)6 [145–147]. A Bose glass is a

gapless spin liquid with a disordered phase at T = 0 that is expected to precede the

Bose-Einstein condensate phase in an applied field. Pressure was also observed to

induce a formation of a Griffiths phase in (C4H12N2)Cu2(Cl1−xBrx)6 [148]. A Mott

glass state precedes the Bose glass at zero-field, and is incompressible (has a vanish-

ing susceptibility at T = 0) despite being gapless. The first experimental realisation

of a Mott glass was discovered in the S = 1 AFM chain NiCl2−2xBr2x · 4SC(NH2)2

(DTN) [140]. Further studies investigated the Bose glass to Bose-Einstein conden-

sate of magnons transition in DTN [149–151], where an increase in x lowers the

spin-gap driving the system closer to a quantum critical point [141].

The combination of pulsed-field magnetisation and µ-SR measurements have

been shown to be highly suited at determining the ground state of Cu2+ complexes

[87, 88, 94–97, 104, 124, 129]. As has been previously mentioned, µ-SR is a local

probe adept at detecting the presence of long-range order throughout a sample.

Pulsed-field magnetisation on the other hand is a bulk measurement technique that

is not necessarily sensitive to long-range order. Critical fields observed in magneti-

sation data can arise due to significant short range correlations in low-dimensional

materials [87, 104]. In the context of bond disorder in quasi-two dimensional antifer-

romagnets, magnetisation measurements can be used to determine the percolation

limit. An absence of an abrupt saturation field would correspond to a totally dis-

ordered sample. Pulsed-field magnetisation and µ-SR measurements are therefore

ideal techniques to investigate bond disorder in a quasi-two dimensional S = 1/2

antiferromagnet.

For this study, the magnetic properties of the quasi two-dimensional coor-
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Figure 5.2: (a) 87(2) K x-ray structure of (QuinH)2CuBr4·2H2O shows the distorted
CuBr2−

4 tetrahedra layer in the crystal ab plane. Dashed lines illustrate close Br-Br
contacts and OH-Br hydrogen bonds. This figure has been taken from Ref. [2].
(b) 150(2) K X-ray structure of (QuinH)2CuCl4·2H2O showing the view down the
a-axis with quinolinium ions (C9H8N+) keeping Cu-Cl planes well separated. This
figure has been taken from Ref. [3]. The two compounds are isostructural.

dination polymer (QuinH)2Cu(ClxBr1−x)4·2H2O will be characterised. The struc-

tures of the parent compounds (QuinH)2CuBr4·2H2O and (QuinH)2CuCl4·2H2O

have been previously determined [2, 3]. The two compounds are isostructural and

are made up of layers of CuX4 (X=Br,Cl) distorted tetrahedra. The CuX4 tetrahe-

dra are connected via hydrogen bonds to water molecules to form two-dimensional

magnetic pathways in the ab plane [Fig. 5.2(a)]. The layers are stacked along the

c-axis and kept well separated by the organic (QuinH) cation [Fig. 5.2(b)]. In the

crystal growth process, flat platelets of (QuinH)2Cu(ClxBr1−x)4·2H2O grow on top

of each other such that the ab plane is parallel to a flat edge. This makes it sim-

ple to align the ab plane with the applied field. The structural parameters of both

(QuinH)2CuBr4·2H2O and (QuinH)2CuCl4·2H2O are shown in Table 5.2. Compar-

ing the parameters of the two parent compounds, there are differences of 4% and

0.4% in the distance between Cu2+ ions in the a-axis and b-axis respectively. It has

also been shown that the size of the bridging halide ion within a superexchange path-

way is more important that the distance between adjacent magnetic ions (Chapter 4

and Ref. [1, 127]). Therefore, it is expected that the structural differences between

the two parent compounds will have a much smaller effect on the magnetism within
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the planes than the composition of the superexchange pathways. The change in the

magnetic properties of (QuinH)2Cu(ClxBr1−x)4·2H2O as the doping (x) increases

will likely be due to an increase in magnetic exchange disorder within the Cu2+

planes alone.

The magnetic properties of (QuinH)2CuBr4·2H2O has been characterised,

which showed it to be a quasi-two dimensional antiferromagnetic system with

J = 6.17(3) K within the Cu-Br-H2O layers and an average g-factor of g = 2.15 [2].

High-field magnetisation measurements also suggest a limit of Tn < 1.8 K,

indicating well isolated layers. The structures of (QuinH)2CuBr4·2H2O and

(QuinH)2CuCl4·2H2O along with the previously mentioned published measurements

suggest the Hamiltonian of (QuinH)2CuCl4·2H2O and (QuinH)2CuBr4·2H2O can be

given by [104]

Ĥ = J
∑
〈i,j〉

Ŝ i · Ŝ j + J⊥
∑
〈i,j′〉⊥

Ŝ i · Ŝ j′ + µbµ0

∑
i

H · g · Ŝ i, (5.1)

where 〈i, j〉 is the sum over unique exchange bonds and j′ indicates an adjacent

magnetic site on a neighbouring plane. J is the primary exchange interaction which

acts in the xy plane and J⊥ is the interplane interaction in the crystal c (z)-axis.

The last term is the Zeeman interaction for spins in an applied magnetic field. Due

to the similarity in the structural parameters, it is likely that (QuinH)2CuCl4·2H2O

will exhibit similar Q2D magnetic behaviour to (QuinH)2CuBr4·2H2O. It is also

expected that the different x should not affect J⊥ due to the small (< 2%) difference

in the distance between Cu2+ layers in the parent compounds.

5.2 Methods and preparatory measurements

Energy dispersive x-ray (EDX) measurements of (QuinH)2Cu(ClxBr1−x)4·2H2O

were performed by Fan Xiao using a Bruker TM-1000 scanning electron micro-

scope (SEM) at Clark University, USA. Single crystals were mounted on a piece of

carbon conductive tape which was attached to an aluminium sample holder within

the spectrometer. The crystals were then exposed to a beam of electrons with

energy 15kV for approximately 90 seconds. An incident electron excites an elec-

tron from an energy level close to the nucleus. An electron in the outer shell

then drops down to the recently vacated level, releasing a photon. This photon

has a unique wavelength for different atoms, allowing the determination of not

only the composition but the relative abundance of atoms within the sample. For

(QuinH)2Cu(ClxBr1−x)4·2H2O the relative abundance of the halide ions were ex-
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tracted. The result of these measurements and a full list of samples prepared are

in Table. 5.2. Measurements performed on different crystals of the same batch

and different spots on the same single crystal showed no evidence of phase sep-

aration, indicating that (QuinH)2Cu(ClxBr1−x)4·2H2O is homogeneous. Also in-

cluded in Table. 5.2 are the measurements made on the different concentrations of

(QuinH)2Cu(ClxBr1−x)4·2H2O. The lowest temperatures measured in the pulsed-

field magnetisation and µ-SR measurements, which are presented in this chapter,

are also included.

Pulsed-field measurements using the short-pulse 65 T magnet at NHMFL,

Los Alamos, USA, were made on small single-crystals with the ab plane parallel to

the applied field. The field at which the magnetisation of exchanged-coupled spin

systems is directly proportional to the strength of the magnetic interactions between

ions within the sample [88]. To determine the critical field at which the samples

saturate, the down sweep data were interpolated in steps of 0.01 T and smoothed

using an adjacent-averaging method with a 20-40 point window. The smoothing was

consecutively applied five times. This process eliminates the noise from the data

without affecting the physically important features. The data was differentiated

once, and then the smoothing method was repeated before a second differentiation

to obtain d2M/dH2.

Zero-field µ-SR measurements of polycrystalline (QuinH)2CuCl4·2H2O were

performed on the HIFI instrument at ISIS, UK. Zero-field µ-SR measurements of

polycrystalline samples of (QuinH)2Cu(ClxBr1−x)4·2H2O (x = 0, 0.01, 0.09, 0.23,

0.25 and 0.41) were made and analysed at PSI, Switzerland by Fan Xiao and Tom

Lancaster. In both cases, the samples were mounted onto a silver backing plate

inside the cryostat using Apiezon vacuum grease.
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Table 5.2: List of concentrations of (QuinH)2Cu(ClxBr1−x)4·2H2O prepared, and
for which measurements were performed. For the pulsed-field magnetisation and
µ-SR techniques, the temperature of the data presented in section 5.3 is stated.
The temperatures in red indicate measurements that were performed at PSI and
analysed by Fan Xiao.

Concentration Pulsed-Field µ-SR

0 0.56 K 0.112 K

0.01 0.67 K 0.02 K

0.02 0.59 K

0.04 0.60 K

0.05 0.58 K

0.09 0.64 K 0.02 K

0.09 0.58 K

0.14 0.59 K

0.17 0.47 K

0.23 0.59 K 0.02 K

0.25 0.60 K 0.02 K

0.41 0.57 K 0.02 K

0.57 0.52 K

0.605 0.59 K

0.74 0.46 K

0.835 0.65 K

0.84 0.65 K

0.95 0.59 K

0.96 0.69 K

1 0.69 K 0.1 K

5.3 Results and discussion

5.3.1 Parent compounds

Magnetisation

Pulsed-field magnetisation measurements of single crystals of (QuinH)2CuBr4·2H2O

[Fig. 5.3(a)] show a concave rise to saturation, indicative of low-dimensional be-

haviour [123]. The saturation field reflects the size of the magnetic interactions

in the sample. As discussed in Section 2.1, the critical field HC is found from

the position of the trough in d2M/dH2. For (QuinH)2CuBr4·2H2O this occurs at

µ0Hc = 16.8(5) T [Fig. 5.3(b)]. This is directly proportional to the strength of the

Q2D magnetic interactions in the sample via the formula

nJ = gµBµ0HC, (5.2)
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Figure 5.3: (a) Pulsed-field magnetisation measurements of (QuinH)2CuBr4·2H2O
(red) and (QuinH)2CuCl4·2H2O (blue). The data presented here is from the
down sweep of the magnetic field. (b) Differential susceptibility and gradi-
ent of differential susceptibility of (QuinH)2CuBr4·2H2O (pink and maroon) and
(QuinH)2CuCl4·2H2O (dark blue and light blue). See table. 5.2 for the tempera-
ture.

where n = 4 is the number of exchange pathways with magnitude J and J � J⊥

[88]. The previously published g-factor of g = 2.15 is used. Using Eq. 5.2, it was

found that J = 6.1(2) K for (QuinH)2CuBr4·2H2O, consistent with the previously

reported measurements [2]. Pulsed-field measurements of (QuinH)2CuCl4·2H2O

show a much more rounded rise to saturation [Fig. 5.3(a)]. The critical field

was found to be µ0HC = 3.8(5) T [Fig. 5.3(b)]. Using Eq. 5.2, this yields

J = 1.4(2) K. As the g-factor for (QuinH)2CuCl4·2H2O is unknown, the powder

averaged value of g = 2.15 was used in this calculation due to the structural sim-
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Figure 5.4: (a) The 0.112 K µ-SR asymmetry spectra of (QuinH)2CuBr4·2H2O and
(b) temperature dependence of the highest frequency oscillation from (a).

ilarity with (QuinH)2CuBr4·2H2O and other quasi-two dimensional Cu2+ materi-

als. The magnitude of J found for (QuinH)2CuCl4·2H2O is lower than that of

(QuinH)2CuBr4·2H2O, which is expected due to the halide substitution [1]. Also,

JBr = 4JCl within errors, which is in excellent agreement with previous measure-

ments [127]. As there is no published g-factor for (QuinH)2CuCl4·2H2O, a magni-

tude of g = 2.15 will be used for all values of x.

µ-SR

Zero-field µ-SR spectra of polycrystalline (QuinH)2CuBr4·2H2O were measured at

PSI, Switzerland, and analysed by Fan Xiao. The 0.112 K asymmetry [A(t)] dis-

played oscillations, which shows the presence of long-range order in (QuinH)2CuBr4·2H2O.

The data was found to be well modelled with three oscillating frequencies [Fig. 5.4(a)]

and fitted to:

A(t) =
3∑
i=1

Aie
−λitcos (2πνit+ φi) +Abge

−λbgt, (5.3)

where there are i = 3 oscillatory components with frequency νi and phase φi, and

a relaxing background with amplitude Abg. The temperature dependence of the

oscillatory component with the highest frequency was used to find TN [Fig. 5.4(b)]

using

νi (T ) = νi (0)

[
1−

(
T

TN

)β]α
. (5.4)

The transition to long-range order was found to be at TN = 1.65(1) K, consistent

with the previously published limits.

Zero-field polycrystalline measurements of (QuinH)2CuCl4·2H2O collected at

1.8 K continuously relaxes and shows no sign of oscillatory behaviour [Fig. 5.5(a) -

green line]. Therefore, the data was fitted to the Kubo-Toyabe model [119];
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Figure 5.5: (a) Time evolution of the asymmetry at 0.1 K (blue line) and 1.8 K
(green line). The light blue and light green lines indicate the errors in the data. The
orange line is a fit of the 0.1 K data to Eq. 5.8 and the red line is a fit of the 1.8 K
data to Eq. 5.5. (b) Temperature dependence of γ. The red line is a fit to Eq. 5.6.
(c) Temperature dependence of ν. The red line is a fit to Eq. 5.9

A(t) = A0 +A(0)

(
1

3
+

2

3
e−∆2t2/2

(
1−∆2t2

))
e−λt, (5.5)

where A0 is the background asymmetry and A(0) is the relaxing asymmetry. An

exponential decay term is included to account for fluctuations that are too fast for

the muons to interact with, which squashes the dip in the Kubo-Toyabe model. ∆

and λ were left free to vary and the best fit was achieved with A0 = 20.69(5) %,

A(0) = 7.44(5) %, ∆ = 0.201(3) and λ = 0.036(4). This model gives a reasonable

description of the data.

As the temperature is lowered, the Kubo-Toyabe model becomes increasingly

less representative of the data. Therefore, measurements at all temperatures were

fitted to the following stretched exponential model
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A(t) = A0 +A(0)e−(λt)γ , (5.6)

with all parameters free to vary. Though a stretched exponential has little physical

meaning, it was found to be the only model to be in agreement with the data

throughout the whole temperature range. The reason for this is unknown. A plot of

the parameter γ varying with temperature is shown in Fig. 5.5(b) and shows a clear

change in behaviour at T ≈ 0.45 K. This is a result of the muons being insensitive

to fluctuations that occur in electronic times scales for T > Tn, but are relaxed

by these on cooling below Tn [87]. This indicates a transition to a magnetically

ordered state, and was modelled using a Fermi function type transition between two

amplitudes γ1 and γ2

γ = γ2 +
γ1 − γ2

e(T−Tn)/ω + 1
, (5.7)

where γ1 < γ2 and ω is the width of the transition. The critical temperature

Tn = 0.44(1) is extracted. The width of the transition is taken to be the error in Tn.

A comparison of the asymmetry between measurements taken at 0.44 and 0.45 K

shows a change in the shape of the relaxation, consistent with a transition to a state

of long-range order.

In the ordered regime, the data shows one damped, weakly oscillating fre-

quency in A(t) [Fig. 5.5(a)]. The damping of the oscillations in Fig. 5.5(a) are

caused by muons settling into sites in the sample that have slightly different values

for the internal magnetic field. The precession of muons therefore dephase from each

other, damping the oscillations in A(t). Therefore, each run was therefore found to

be best modelled using

A(t) = A0 +A(0)
[
p1e
−(λ1t)cos (2πνt) + p2e

−(λ2t)
γ2
]
, (5.8)

where ν1 is the frequency of the oscillation, p1 is the proportion of muons that sit at

sites where they will oscillate and p2 is the proportion of muons that sit at sites with

no oscillations. When fitting the 0.1 K data, all parameters were left to vary freely.

For all subsequent runs, A0 and A(0) were left fixed. The amplitude of oscillations

was found to be very small with p1 ≈ 2%, similar to [Cu(4-phpyO)2(pyz)2](ClO4)2

[104] and the [Cu(pyz)2(pyO)2]Y2 (Y = BF4, PF6) family [104, 118]. λ1 was found

to vary between orders of 0.01 and 0.1, which suggests that the damping is light

and the distribution in the local magnetic field is small at this muon site [95]. The

other parameters remain relatively constant around λ2 ≈ 0.2 and γ2 ≈ 1.6. The

resultant temperature dependence of the frequency is plotted in Fig. 5.5(c) and
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Figure 5.6: Comparison of the time evolution of the asymmetry at 0.44 K (red line)
and 0.45 K (blue line). The light blue and orange lines indicates the errors in the
0.44 K and 0.45 K data respectively.

shows a shallow downward curve from low temperature towards Tc. This was fitted

to the phenomenological function

ν = ν(0)

[
1−

(
T

Tn

)α]β
. (5.9)

For T > 0.36 K, the amplitude of the oscillations become too small too be observ-

able. There aren’t enough points close to the critical region to achieve an accurate

TN in Fig. 5.5(c). Therefore value of Tn was set to the previously obtained value

of 0.44 K. The other parameters extracted from Eq. 5.9 were ν(0) = 0.4(2) MHz,

which indicates the magnitude of the magnetic field at at the oscillating muon

site, α = 1.1(6) and β = 0.20(5). For (QuinH)2CuCl4·2H2O, ν(0) is a simi-

lar order of magnitude to frequencies observed in many similar copper systems.

These systems usually have more than one oscillation frequency however. For

(QuinH)2CuCl4·2H2O, it may be the case that muons do not stop at the sites that

have the higher frequencies or that these frequencies have negligible amplitudes

[118, 125]. β describes the behaviour around Tn and is used to make inferences

about the magnetic dimensionality. For (QuinH)2CuCl4·2H2O this value is typical

of low-dimensionality [118]. However, due to the lack of data points in this region,

this parameter has a low dependency in the fitting of the model.

The Yasuda relationship relates J and J⊥ to the ordering temperature Tn of

S = 1/2 Q2D systems [102]:

TN
J

=
2.30

2.43− ln
∣∣∣J⊥J ∣∣∣ , (5.10)

and is precise to one order of magnitude. Using the values of J and TN ex-
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tracted from pulsed-field and µ-SR measurements, the strength of interplane mag-

netic interactions are found to be J⊥ = 0.014(5) K for (QuinH)2CuBr4·2H2O and

J⊥ = 0.011(8) K for (QuinH)2CuCl4·2H2O. These values of J⊥ are the same within

the errors. Therefore, substitution of the halide atoms has a vanishingly small effect

on the strength of J⊥ and any deviation from Eq. 5.10 on changing x is due to

exchange disorder in the Cu2+ planes.

5.3.2 Disordered compounds

Magnetisation

The low-temperature (T ≈ 0.6 K) pulsed-field magnetisation measurements of

single-crystals of (QuinH)2Cu(ClxBr1−x)4·2H2O for all concentrations are shown

in Fig. 5.7. For x close to zero there is the concave rise to saturation indicative

of low-dimensional antiferromagnetism [Fig. 5.7(a)]. As the concentration (x) in-

creases above x = 0.05, the magnetisation becomes less concave. The saturation

point decreases slightly in field and becomes much more rounded. A small hump

also develops at low fields. Whilst this could be due to the saturation of Cu2+

ions within Cl-rich regions in the samples, EDX measurements suggest that this is

not the case. The cause of this hump is therefore unknown. As the concentration

approaches 0.6, the magnetisation becomes very rounded, such that the saturation

field becomes very broad [Fig. 5.7(a),(b)]. For x = 0.74 and x = 0.835, there is

no unambiguous saturation feature in the expected region 0 ≤ µ0H ≤ 5 T in the

d2M/dH2 data based on the x = 0.605 and x = 0.84 measurements (Fig. 5.8).

There is an observable saturation field for x = 0.84 and above [Fig. 5.7(c)]. As the

concentration approaches x = 1 the data becomes more concave, consistent with

the return to low-dimensional antiferromagnetism in (QuinH)2CuCl4·2H2O.

The critical fields obtained from pulsed-field magnetisation measurements of

the disordered samples are summarised in Fig. 5.9. They show a slow decrease in the

critical field from HC = 16.8(5) T at x = 0, until x = 0.41 at which there appears

to be a sharper drop towards zero around x = 0.61. The x ≤ 0.605 data was fitted

to the following phenomenological model

HC (x) = HC (0)

[
1−

(
x

xC

)n]m
. (5.11)
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Figure 5.7: Low-temperature pulsed-field magnetisation data of
(QuinH)2Cu(ClxBr1−x)4·2H2O taken in decreasing fields for (a) x ≤ 0.25,
(b) 0.41 ≤ x ≤ 0.835 and (c) 0.84 ≤ x. See table. 5.2 for the temperature that
each measurement was taken at.
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Figure 5.8: Down sweep dM/dH and d2M/dH2 data for
(QuinH)2Cu(ClxBr1−x)4·2H2O with (a) x = 0.605, (b) x = 0.74, (c) x = 0.835
and (d) x = 0.84. The lack of a critical field Hc in the x = 0.74 and x = 0.835
data is indicative of a disordered phase in these samples.
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Figure 5.9: Phase diagram showing the critical fields in pulsed-field magnetisation
measurements for different concentrations x.

The fit (blue line in Fig. 5.9) yields xc = 0.605(1) with exponents n = 0.43(26) and

m = 0.095(24). As mentioned previously, there is no apparent saturation point

in the region 0.605 < x < 0.84. At x = 0.84, a sharp feature in the data at the

saturation point reappears. As magnetisation measurements indicated the presence

of short range correlations, this suggests that there is a disordered region is in the

region 0.605 < x < 0.84.

It appears that there are two separate regimes either side of this region of

disorder. The left hand side is dominated by interactions via Cu-Br-Cu pathways,

whereas the right-hand side is dominated by Cu-Cl-Cu routes. Within each regime

it is assumed that an increase in the broadness of the saturation point is due to an

increase in the disorder of the Q2D system. The error bars are determined from

the full width at half-maximum of the trough in d2M/dH2 and is an indication of

how sharp the saturation point is. Bigger errors correspond to a broader saturation

point. It seems that as (QuinH)2Cu(ClxBr1−x)4·2H2O becomes more disordered,

the broadness of the saturation point increases.
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Figure 5.10: Left column: the lowest temperature µ-SR asymmetry spectra
of (QuinH)2Cu(ClxBr1−x)4·2H2O. From top to bottom is (QuinH)2CuBr4·2H2O
(added for comparison) and then x = 0.01, 0.09. 0.23, 0.25, 0.41. Right column:
temperature dependence of the highest frequency oscillation from the left column.
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Figure 5.11: Ordering temperature of (QuinH)2Cu(ClxBr1−x)4·2H2O as a function
of x (green dots). The x ≤ 0.25 data points have been fitted to a linear model with
xC1 = 0.39 (green line). Also included are the predicted ordering temperatures for
(QuinH)2Cu(ClxBr1−x)4·2H2O using the values of J obtained from magnetisation
measurements, and assuming that J⊥ is constant and Eq. 5.10 holds for all x

µ-SR

Low-temperature µ-SR spectra of polycrystalline (QuinH)2Cu(ClxBr1−x)4·2H2O

(x=0.01, 0.09, 0.23, 0.25 and 0.41) were measured at PSI and analysed by Fan

Xiao (University of Bern) and are shown in the left column of Fig. 5.10. The data

displays oscillations with two (x = 0.23, 0.25) or three (x = 0.01, 0.09) different fre-

quencies. The asymmetry data was fitted to Fig. 5.3. The temperature dependence

(right column of Fig. 5.10) of the oscillation with the highest frequency for each

sample was fitted to Eq. 5.4. This yields ordering temperatures of 1.61(1), 1.31(1),

0.68(1) and 0.60(1) K for x=0.01, 0.09, 0.23 and 0.25 respectively. There is no

discernible evidence of oscillations indicating the presence of long-range order for

x = 0.41. The x = 0.41 data at all temperatures was fitted to Eq. 5.6 and no sudden

change in the behaviour of λ1 (Fig. 5.10) was observed, suggesting that there is no

long-range order for x = 0.41 at T > 0.02 K.

The concentration dependence of TN is plotted in Fig. 5.11 and shows a linear

drop with no LRO predicted for x ≥ 0.39, consistent with the upper bound on TN

for x = 0.41. This is at odds with the results from the magnetisation measurements

which gives xC = 0.605. One interpretation of this disparity is that disorder destroys

the LRO in the region 0.39 < x < 0.61, but there are still short range correlations

present. Also included in Fig. 5.11 are the ordering temperatures assuming that
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J⊥ is constant and Eq. 5.10 holds for all x. It is clear that the actual ordering

temperature is less than the predicted data. This suggests that long-range ordering

is being suppressed for x 6= 0, 1. This will be discussed further in the next section.

5.4 Summary

The effect of magnetic exchange disorder in Q2D antiferromagnets has been investi-

gated using pulsed-field magnetisation and µ-SR measurements. A proposed phase

diagram is shown in Fig. 5.12. For small amounts of disorder, there is little change

in the effective exchange strength. As x approaches 0.6 from below, there is a much

sharper drop and J appears to go to zero in the region 0.605 ≤ x ≤ 0.74. However,

there is a much faster decrease in the ordering temperature for low x values with no

apparent long-range order for x = 0.41. For high x, short correlations persist as low

as x = 0.84, and there is long-range order below Tn = 0.44(1) K for x = 1. Further

measurements are required to accurately map out this side of the phase diagram.

The parameters of samples with known ordering temperatures are summarised in

Table. 5.3. If Eq. 5.10 holds for all values of x, there is a substantial decrease in J⊥

for x < 0.41. It has been shown that there is practically no change in J⊥ between

(QuinH)2CuBr4·2H2O and (QuinH)2CuCl4·2H2O. This suggests that the decrease

in TN is not solely driven by a difference in dimensionality but by the enhancement

of quantum fluctuations as x increases.

The concentration at which long range order seems to disappear for any ob-

servable temperature is at xC1 = 0.39 (1). However, a critical field continues to be

observed in magnetometry measurements up to xC2 = 0.61 (1). Bulk magnetom-

etry is not a good indicator of LRO and critical fields can arise from short-range

correlations in low-dimensional materials. The region 0.605 < x < 0.84 appears

to be totally disordered due to the absence of any critical field in the x = 0.74,

0.835 magnetisation data and the absence of long-range order for 0.41 < x < 1. If

J → 0, this suggests a decoupling of the magnetic transition (xC1) and the percola-

tion transition (xC2). In this case, the model published by R. Yu et al. is consistent

with the data. The presence of two competing magnetic pathways with different

strengths between Cu2+ ions is likely to lead to inhomogeneity within the sample.

This could give rise to segments of ladders at the Br-rich end of the spectrum which

are linked via Cu-Cl-Cu pathways and the local formation of Cu-Br-Cu dimers at

the Cl-rich end of the spectrum. These locally fluctuating states enhance quantum

fluctuations, which would destroy long-range order within the sample. The region

0.61 < x < 0.84 could be a quantum disordered phase and 0.39 < x < 0.61 may be
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Figure 5.12: Proposed phase diagram of (QuinH)2Cu(ClxBr1−x)4·2H2O. The phase
boundaries are estimates suggested by the experimental data (see text). As
x increases from zero, (QuinH)2Cu(ClxBr1−x)4·2H2O remains in an antiferro-
magnetically ordered state at T = 0 until quantum fluctuations destroy long-
range order at xc1 = 0.39. (QuinH)2Cu(ClxBr1−x)4·2H2O then enters a quan-
tum Griffiths phase with large magnetically ordered regions. At xc2 = 0.61,
(QuinH)2Cu(ClxBr1−x)4·2H2O becomes fully disordered with no evidence of short
range correlations. A sharp saturation point re-emerges at x = 0.84 and there is
long range order at T = 0 for (QuinH)2CuCl4·2H2O. For x > 0.8, patterned regions
correspond to estimated regions mirroring the low-x end of the spectrum, with more
experiments required to map out the phase boundaries at high-x.

an experimental realisation of a quantum Griffiths phase [109]. The absence of

long-range order but the presence of a critical field indicating short-range corre-

lations does suggest the formation of large magnetically ordered regions within

the global paramagnetic phase (T > Tn). This phase has been reported in

antiferromagnets previously in the site diluted Fe1−xZnxF2 [152], the geomet-

rically frustrated DyBaCo4O7+δ [143] and is reported to be induced by pres-

sure in (C4H12N2)Cu2(Cl1−xBrx)6[148]. Therefore, (QuinH)2Cu(ClxBr1−x)4·2H2O

presents an excellent opportunity to further study this novel phase in a bond disor-
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Table 5.3: Table showing parameters extracted from pulsed-field (J) and µ-SR (TN)
measurements.

x 0 0.01 0.09 0.23 0.25 1

J (K) 6.1(2) 6.3(2) 5.9(2) 5.6(3) 5.0(3) 1.4(2)

TN (K) 1.65(1) 1.61(1) 1.31(1) 0.68(1) 0.60(1) 0.44(1)

dered antiferromagnet.

However, it is possible that there is a smooth, continuous transition between

the JBr and JCl dominant regimes within the ”disordered” region. More measure-

ments are required to accurately determine whether this region is truly disordered.

Also required are further µ-SR measurements to explore the behaviour of Tn in the

region 0.84 ≤ x < 1. Future investigations can also make further use of the varied

magnetic behaviour of the halide ions in superexchange pathways studied in Chapter

2. For example, (QuinH)2Cu(FxI1−x)4·2H2O could be a more effective realisation

of bond dilution due to the predicted large difference in the two exchange strengths

(JI � JF ).

120



Chapter 6

Conclusion

Low-dimensional antiferromagnets have long been studied by condensed matter

physicists, predominantly with the aim of verifying various theoretical predictions.

There are significant challenges in trying to apply these systems to real world situa-

tions. Magnetism on a microscopic level is still not fully understood, and attempts

to produce bespoke magnetic system do not succeed regularly. This is partly due

to complex ground states for S ≥ 1 antiferromagnets, which make them more diffi-

cult to characterise, and the lack of single crystals sufficiently large enough to make

measurements on. In this thesis, I have presented a methodology for characterising

the magnetic properties of low-dimensional anisotropic Ni2+ complexes in powdered

form. This uses readily available magnetometry and heat capacity techniques and

was largely successful and could be applied more widely to related systems enabling

swift characterisation of new materials and improved feedback on structure/property

relationships to chemists growing new examples of low-dimensional magnets. A deci-

sion on whether further studies making use of more difficult and costly measurements

and/or single-crystal growth can then be made. During these measurements a trend

has emerged linking the arrangement of the local Ni2+ octahedral environment and

the sign and size of D, while further measurements would be desirable to confirm

this tendency, it could be used by sample growers to engineer materials with specific

single-ion properties. The NiI2(3,5-lut)4 system is ideal for in-depth measurements

of the excitations and critical properties of ideal Haldane chains, which have not

been possible previously due to high critical fields and/or large anisotropy. The

work on (QuinH)2Cu(ClxBr1−x)4·2H2O is the first such study of bond-disordered

two-dimensional quasi-Heisenberg antiferromagnets and is suggestive of an exotic

disordered phase.

Magnetisation measurements are highly effective at determining whether
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single-ion anisotropy and/or magnetic exchange is the dominant term in the Hamil-

tonian of a low-dimensional spin-1 quantum magnet. The shape of the differential

susceptibility is different for |D| � J , D ∼ J and |D| � J . The former case exhibits

a smooth drop, with a weak hump if |D| > 0 at gµbµ0Hc =
√
D2 − E2. For |D| ∼ J

there is at least one sharp feature indicating a critical field and a less rounded sat-

uration point than for |D| � J . For |D| � J , there is only one sharp feature which

occurs at saturation.

In a system of ions where the single-ion anisotropy term is dominant, mod-

elling susceptibility measurements gives an accurate value of the magnitude and sign

of D and E can be obtained. Heat capacity measurements are also able to accurately

measure the size and sign of D and E in isolated systems using Eq. 3.5 and Eq. 2.1.

For the case D ∼ J the analysis is more complicated. Low-temperature magnetisa-

tion measurements may indicate a sample is easy-axis by the presence of a spin-flop

or spin-flip. Accurate values of D and J can be calculated from the positions of crit-

ical fields described in section. 2.3. Heat capacity measurements are highly suited

to observing the transition to long-range order. This can be used to help map out

the phase diagram of these compounds. However, the lambda peak can also mask

the Schottky anomaly, and therefore cannot not be relied on to model single-ion

anisotropy in anisotropic exchange coupled systems. It has also been shown that

susceptibility measurements can indicate Tn via the Fisher relation.

This methodology has been used to further understand the interplay between

structure and composition, and the magnetic properties of Ni2+ chains. NiF2(3,5-

lut)4·H2O and the NiX2(3,5-lut)4 (X = HF2, Cl, Br, I) family are made up of Ni-

X-X-Ni chains. Whilst the substitution of different halides changes the structure

significantly along the chains, there is little change perpendicular to the chains,

where non-bridging lutidine molecules inhibit magnetic interactions. The NiX2N4

octahedra also have very similar Ni—N bond lengths for all NiF2(3,5-lut)4·H2O

and NiX2(3,5-lut)4. These structural similarities between NiF2(3,5-lut)4·H2O and

NiX2(3,5-lut)4 give an excellent baseline with which to understand how the different

halide ions effect the single-ion anisotropy and the magnetic exchange between Ni2+

ions along the chains. It was found that NiF2(3,5-lut)4·H2O, Ni(HF2)2(3,5-lut)4

and NiCl2(3,5-lut)4 contain negligible interactions and easy-plane anisotropy with

D = +8.4(7), +11.97(2) and +9.6(2) K respectively. NiI2(3,5-lut)4 is a near ideal

Heisenberg spin-chain in the Haldane phase with J = 17.5(1) K. NiI2(3,5-lut)4

is one of the most isotropic Haldane spin chains currently known, and has low

critical fields within the range of commercially available magnets and magnets at

neutron, muon and x-ray facilities. NiI2(3,5-lut)4 therefore has superb potential

122



for exploring the Haldane phase further. NiBr2(3,5-lut)4 appears to be made up of

weakly interacting anisotropic spins with J = 0.8(1) K and D = +6.4(1.2) K.

Susceptibility measurements do not agree with the magnitude of D and further

measurements are required to confirm this.

As the size of the axial halide ligand in NiX2(3,5-lut)4 increases it moves

further away from the Ni2+ ion. This increased elongation of the axial Ni—X bond

corresponds to a decrease in the magnitude of D for NiX2(3,5-lut)4, which does not

agree with the previously published theory [34]. However, this is based purely on

bond lengths within Ni2+ octahedra. There are different ligands in NiX2(3,5-lut)4

that need to be taken into account. Even if the composition of the octahedra is

kept constant and the bond lengths are changed, the structural dependence of D

for NiN4F2 octahedra is not consistent with this theory (Fig. 4.14). Along with

the results Chapter 3 for NiN4O2, NiN2O4 and NiN4OF octahedra, this suggests

that the moments on the nickel ions may prefer to point away from the most elec-

tronegative ligand. For NiX2(3,5-lut)4, this explains why octahedra with fluorine

and chlorine ions, which are more electronegative than nitrogen, have easy-plane

anisotropy. However, bromine and iodine are less electronegative than nitrogen but

NiBr2(3,5-lut)4 has D > 0 and NiI2(3,5-lut)4 is almost Heisenberg-like. Therefore,

it appears that single-ion anisotropy is affected by a mixture of crystal field and

electronegative effects which compete against each other.

There is also a trend linking structure and composition to the magnetic ex-

change along Ni-X-X-Ni pathways in NiX2(3,5-lut)4. As the size of the bridging

ion increases, adjacent nickel ions move closer together and J increases. Whilst

NiF2(3,5-lut)4·H2O doesn’t follow this behaviour, the water molecule within the su-

perexchange pathway appears to help inhibit magnetic interactions. Comparing the

trends for NiX2(3,5-lut)4 with NiX2(pyz)2, both families show increasing strength

of magnetic interactions as the size of the halide ions in the superexchange path-

ways increases [1]. However, the Ni—Ni distance increases in NiX2(pyz)2 as the size

of X increases. This suggests that the size of the bridging halide ion has a more

significant contribution to the strength of the superexchange interaction than the

distance between Ni2+ ions.

Larger halide ions within superexchange pathways being better mediators of

exchange is consistent with the magnetic properties of the quasi-two dimensional

(QuinH)2CuBr4·2H2O and (QuinH)2CuCl4·2H2O, where JBr ≈ 4JCl. From these

parent samples, single-crystals of (QuinH)2Cu(ClxBr1−x)4·2H2O were grown, which

exhibit bond disorder within the Cu-X planes due to he presence of these two com-

peting magnetic pathways with different strengths. For low x, it was found that long
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range order seemed to disappear for any observable temperature at xC1 = 0.39 (1).

However, evidence of short-range correlations were observed up to xC2 = 0.605.

The region 0.605 < x < 0.84 appears to be totally disordered due to the absence

of any sharp feature in the x = 0.74 and 0.835 magnetisation data and the ab-

sence of long-range order for x ≥ 0.41. A sharp feature at saturation reappears

in the x = 0.84 magnetisation data and there is long-range order below 0.44(1) K

in (QuinH)2CuCl4·2H2O. The data suggests a decoupling of the magnetic transi-

tion (xC1) and the percolation transition (xC2). This is consistent with the model

published by R. Yu et al. [109]. Bond disorder seems to enhance quantum fluc-

tuations, which destroys the classically predicted long-range order in the region

xC1 ≤ x ≤ xC2. There is a strong suggestion that a quantum Griffiths phase resides

in this region.

The work presented in this thesis has furthered the understanding in how

to characterise powdered, low-dimensional, anisotropic S = 1 Ni2+ antiferromag-

nets; how the magnetism is affected by changes in structure and composition;

and an indication of how bond disorder effects magnetic interactions in a spin-

1/2 quasi-two dimensional magnet antiferromagnet. However, further work re-

mains. As this thesis has shown that electronic properties has a significant in-

fluence on single-ion and magnetic exchange properties, confirmation of the charac-

terisation methodology is required to determine if it can be used universally for all

S = 1 compounds. Further attempts to chemically engineer easy-axis Ni2+-halide

chains are required to verify the prediction that moments prefer to point away from

strongly electronegative atoms made in Chapter 4. Finally, further measurements

on (QuinH)2Cu(ClxBr1−x)4·2H2O in the region 0.61 < x < 1 are required to finish

mapping out the phase diagram and to accurately determine the nature of the two

disordered phases.
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Mol. to Mater., J. S. Miller, M. Drillon, eds. (Wiley-VCH Verlag GmbH &

Co. KGaA, Weinheim, Germany, 2003), vol. 1-5, pp. 1–47.

127



[56] N. Tsyrulin, et al., Phys. Rev. B 81, 134409 (2010).

[57] N. D. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).

[58] M. E. Lines, J. Appl. Phys. 40, 1352 (1969).

[59] M. A. Kastner, R. J. Birgeneau, G. Shirane, Y. Endoh, Rev. Mod. Phys. 70,

897 (1998).

[60] K. Harada, N. Kawashima, J. Phys. Soc. Japan 67, 2768 (1998).

[61] Z. Zhang, et al., Phys. Rev. B 87, 174405 (2013).

[62] J.-P. Renard, L.-P. Regnault, M. Verdaguer, Magn. Mol. to Mater. (Wiley-

VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2003), vol. 3, pp.

49–93.

[63] J. P. Renard, et al., Europhys. Lett. 3, 945 (1987).

[64] O. Avenel, et al., Phys. Rev. B 46, 8655 (1992).

[65] H. Manaka, I. Yamada, Z. Honda, H. Aruga Katori, K. Katsumata, J. Phys.

Soc. Japan 67, 3913 (1998).

[66] J. P. Renard, et al., J. Appl. Phys. 63, 3538 (1988).

[67] K. Katsumata, et al., Phys. Rev. Lett. 63, 86 (1989).

[68] V. Gadet, et al., Phys. Rev. B 44, 705 (1991).

[69] T. Takeuchi, et al., J. Phys. Soc. Japan 61, 3255 (1992).

[70] A. K. Bera, et al., Phys. Rev. B 87, 224423 (2013).

[71] Z. Honda, H. Asakawa, K. Katsumata, Phys. Rev. Lett. 81, 2566 (1998).

[72] Z. Honda, K. Katsumata, M. Hagiwara, M. Tokunaga, Phys. Rev. B 60, 9272

(1999).

[73] E. S. Sorensen, I. Affleck, Phys. Rev. B 51, 16115 (1995).

[74] T. Kawae, M. Ito, M. Mito, K. Takeda, J. Phys. Soc. Japan 68, 740 (1999).

[75] Y. Uchiyama, et al., Phys. Rev. Lett. 83, 632 (1999).

[76] M. Hagiwara, K. Katsumata, I. Affleck, B. I. Halperin, J. P. Renard, Phys.

Rev. Lett. 65, 3181 (1990).

128



[77] J. Lou, S. Qin, Z. Su, L. Yu, Phys. Rev. B 58, 12672 (1998).

[78] A. P. Ramirez, S.-W. Cheong, M. L. Kaplan, Phys. Rev. Lett. 72, 3108 (1994).

[79] K. Hallberg, C. D. Batista, a. a. Aligia, Phys. Rev. B 58, 9248 (1997).

[80] M. W. Meisel, arXiv:9809077v1 (1998).

[81] G. E. Granroth, et al., Phys. Rev. B 58, 9312 (1998).

[82] M. Fujita, Met. Fram., L. R. MacGillivray, ed. (John Wiley & Sons, Inc.,

Hoboken, NJ, USA, 2010), pp. 1–35.

[83] S. R. Batten, et al., CrystEngComm 14, 3001 (2012).

[84] P. Ball, Bright Earth: Art and the Invention of Color , no. March (Farrar,

Straus and Giroux, New York, 2001).

[85] H. J. Buser, D. Schwarzenbach, W. Petter, A. Ludi, Inorg. Chem. 16, 2704

(1977).

[86] F. Herren, P. Fischer, A. Ludi, W. Haelg, Inorg. Chem. 19, 956 (1980).

[87] T. Lancaster, et al., Phys. Rev. Lett. 112, 1 (2014).

[88] P. A. Goddard, et al., Phys. Rev. Lett. 108, 1 (2012).
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[141] M. Dupont, S. Capponi, M. Horvatić, N. Laflorencie, Phys. Rev. B 96, 024442

(2017).

[142] Y. C. Tzeng, H. Onishi, T. Okubo, Y. J. Kao, Phys. Rev. B 96, 1 (2017).

[143] J. Kumar, S. N. Panja, S. Dengre, S. Nair, Phys. Rev. B 95, 054401 (2017).

[144] M. Thede, et al., Phys. Rev. B 86, 180407 (2012).
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