249 research outputs found

    Understanding Helical Magnetic Dynamo Spectra with a Nonlinear Four-Scale Theory

    Get PDF
    Recent MHD dynamo simulations for magnetic Prandtl number >1>1 demonstrate that when MHD turbulence is forced with sufficient kinetic helicity, the saturated magnetic energy spectrum evolves from having a single peak below the forcing scale to become doubly peaked with one peak at the system (=largest) scale and one at the forcing scale. The system scale field growth is well modeled by a recent nonlinear two-scale nonlinear helical dynamo theory in which the system and forcing scales carry magnetic helicity of opposite sign. But a two-scale theory cannot model the shift of the small-scale peak toward the forcing scale. Here I develop a four-scale helical dynamo theory which shows that the small-scale helical magnetic energy first saturates at very small scales, but then successively saturates at larger values at larger scales, eventually becoming dominated by the forcing scale. The transfer of the small scale peak to the forcing scale is completed by the end of the kinematic growth regime of the large scale field, and does not depend on magnetic Reynolds number RMR_M for large RMR_M. The four-scale and two-scale theories subsequently evolve almost identically, and both show significant field growth on the system and forcing scales that is independent of RMR_M. In the present approach, the helical and nonhelical parts of the spectrum are largely decoupled. Implications for fractionally helical turbulence are discussed.Comment: 19 Pages, LaTex, (includes 4 figs at the end), in press, MNRA

    The Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction across a tunneling junction out of equilibrium

    Full text link
    The Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between two magnetic ss-dd spin impurities across a tunneling junction is studied when the system is driven out of equilibrium through biasing the junction. The nonequilibrium situation is handled with the Keldysh time-loop perturbation formalism in conjunction with appropriate coupling methods for tunneling systems due to Caroli and Feuchtwang. We find that the presence of a nonequilibrium bias across the junction leads to an interference of several fundamental oscillations, such that in this tunneling geometry, it is possible to tune the interaction between ferromagnetic and antiferromagnetic coupling at a fixed impurity configuration, simply by changing the bias across the junction. Furthermore, it is shown that the range of the RKKY interaction is altered out of equilibrium, such that in particular the interaction energy between two slabs of spins scales extensively with the thickness of the slabs in the presence of an applied bias.Comment: 38 pages revtex preprint; 5 postscript figures; submitted to Phys. Rev.

    Simulations of galactic dynamos

    Full text link
    We review our current understanding of galactic dynamo theory, paying particular attention to numerical simulations both of the mean-field equations and the original three-dimensional equations relevant to describing the magnetic field evolution for a turbulent flow. We emphasize the theoretical difficulties in explaining non-axisymmetric magnetic fields in galaxies and discuss the observational basis for such results in terms of rotation measure analysis. Next, we discuss nonlinear theory, the role of magnetic helicity conservation and magnetic helicity fluxes. This leads to the possibility that galactic magnetic fields may be bi-helical, with opposite signs of helicity and large and small length scales. We discuss their observational signatures and close by discussing the possibilities of explaining the origin of primordial magnetic fields.Comment: 28 pages, 15 figure, to appear in Lecture Notes in Physics "Magnetic fields in diffuse media", Eds. E. de Gouveia Dal Pino and A. Lazaria

    Non-LTE modeling of supernova-fallback disks

    Get PDF
    We present a first detailed spectrum synthesis calculation of a supernova-fallback disk composed of iron. We assume a geometrically thin disk with a radial structure described by the classical alpha-disk model. The disk is represented by concentric rings radiating as plane-parallel slabs. The vertical structure and emission spectrum of each ring is computed in a fully self-consistent manner by solving the structure equations simultaneously with the radiation transfer equations under non-LTE conditions. We describe the properties of a specific disk model and discuss various effects on the emergent UV/optical spectrum. We find that strong iron-line blanketing causes broad absorption features over the whole spectral range. Limb darkening changes the spectral distribution up to a factor of four depending on the inclination angle. Consequently, such differences also occur between a blackbody spectrum and our model. The overall spectral shape is independent of the exact chemical composition as long as iron is the dominant species. A pure iron composition cannot be distinguished from silicon-burning ash. Non-LTE effects are small and restricted to few spectral features.Comment: ApSS, accepted, Proceedings of Isolated Neutron Stars: from the Interior to the Surface, April 24-28, 2006, London, U

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)

    Get PDF
    [no abstract available
    corecore