511 research outputs found

    The origin of runaway stars

    Full text link
    Milli-arcsecond astrometry provided by Hipparcos and by radio observations makes it possible to retrace the orbits of some of the nearest runaway stars and pulsars to determine their site of origin. The orbits of the runaways AE Aurigae and mu Columbae and of the eccentric binary iota Orionis intersect each other about 2.5 Myr ago in the nascent Trapezium cluster, confirming that these runaways were formed in a binary-binary encounter. The path of the runaway star zeta Ophiuchi intersects that of the nearby pulsar PSR J1932+1059, about 1 Myr ago, in the young stellar group Upper Scorpius. We propose that this neutron star is the remnant of a supernova that occurred in a binary system which also contained zeta Oph, and deduce that the pulsar received a kick velocity of about 350 km/s in the explosion. These two cases provide the first specific kinematic evidence that both mechanisms proposed for the production of runaway stars, the dynamical ejection scenario and the binary-supernova scenario, operate in nature.Comment: 5 pages, including 2 eps-figures and 1 table, submitted to the ApJ Letters. The manuscript was typeset using aaste

    Radial velocities of early-type stars in the Perseus OB2 association

    Get PDF
    We present radial velocities for 29 B- and A-type stars in the field of the nearby association Perseus OB2. The velocities are derived from spectra obtained with AURELIE, via cross correlation with radial velocity standards matched as closely as possible in spectral type. The resulting accuracy is ~2 - 3 km s−1^{-1}. We use these measurements, together with published values for a few other early-type stars, to study membership of the association. The mean radial velocity (and measured velocity dispersion) of Per OB2 is 23.5 \pm 3.9 km s−1^{-1}, and lies ~15 km s−1^{-1} away from the mean velocity of the local disk field stars. We identify a number of interlopers in the list of possible late-B- and A-type members which was based on Hipparcos parallaxes and proper motions, and discuss the colour-magnitude diagram of the association.Comment: 20 pages, 9 figures, accepted for publication in A&A, minor revision

    A Hipparcos census of the nearby OB associations

    Get PDF
    A comprehensive census of the stellar content of the nearby OB associations is presented, based on Hipparcos positions, proper motions, and parallaxes. Moving groups are identified by combining de Bruijne's refurbished convergent point method with the `Spaghetti method' of Hoogerwerf & Aguilar. Monte Carlo simulations are used to estimate the expected number of interloper field stars. Astrometric members are listed for 12 young stellar groups, out to a distance of ~650 pc. These are the 3 subgroups Upper Scorpius, Upper Centaurus Lupus and Lower Centaurus Crux of Sco OB2, as well as Vel OB2, Tr 10, Col 121, Per OB2, alpha Persei (Per OB3), Cas-Tau, Lac OB1, Cep OB2, and a new group designated as Cep OB6. The selection procedure corrects the list of previously known astrometric and photometric B- and A-type members, and identifies many new members, including a significant number of F stars, as well as evolved stars, e.g., the Wolf-Rayet stars gamma^2 Vel (Vel OB2) and EZ CMa (Col 121), and the classical Cepheid delta Cep in Cep OB6. In the nearest associations the later-type members include T Tauri objects and other pre-main sequence stars. Astrometric evidence for moving groups in the fields of R CrA, CMa OB1, Mon OB1, Ori OB1, Cam OB1, Cep OB3, Cep OB4, Cyg OB4, Cyg OB7, and Sct OB2, is inconclusive, due to their large distance or unfavorable kinematics. The mean distances of the well-established groups are systematically smaller than previous estimates. The mean motions display a systematic pattern, which is discussed in relation to the Gould Belt. Six of the 12 detected moving groups do not appear in the classical list of nearby OB associations. The number of unbound young stellar groups in the Solar neighbourhood may be significantly larger than thought previously.Comment: 51 pages, 30 PostScript figures, 6 tables in PostScript format, default LaTeX using psfig.sty; accepted for publication in the Astronomical Journal, scheduled for January 1999 issue. Abbreviated abstrac

    OB Associations

    Get PDF
    Since the previous (1990) edition of this meeting enormous progress in the field of OB associations has been made. Data from X-ray satellites have greatly advanced the study of the low-mass stellar content of associations, while astrometric data from the Hipparcos satellite allow for a characterization of the higher-mass content of associations with unprecedented accuracy. We review recent work on the OB associations located within 1.5 kpc from the Sun, discuss the Hipparcos results at length, and point out directions for future research.Comment: To appear in The Physics of Star Formation and Early Stellar Evolution II, eds C.J. Lada & N. Kylafis (Kluwer Academic), 30 pages, 9 EPS-figures, LaTeX using crckapb.sty, epsfig.sty, amssymb.st

    Triggered Star Formation by Massive Stars

    Full text link
    We present our diagnosis of the role that massive stars play in the formation of low- and intermediate-mass stars in OB associations (the Lambda Ori region, Ori OB1, and Lac OB1 associations). We find that the classical T Tauri stars and Herbig Ae/Be stars tend to line up between luminous O stars and bright-rimmed or comet-shaped clouds; the closer to a cloud the progressively younger they are. Our positional and chronological study lends support to the validity of the radiation-driven implosion mechanism, where the Lyman continuum photons from a luminous O star create expanding ionization fronts to evaporate and compress nearby clouds into bright-rimmed or comet-shaped clouds. Implosive pressure then causes dense clumps to collapse, prompting the formation of low-mass stars on the cloud surface (i.e., the bright rim) and intermediate-mass stars somewhat deeper in the cloud. These stars are a signpost of current star formation; no young stars are seen leading the ionization fronts further into the cloud. Young stars in bright-rimmed or comet-shaped clouds are likely to have been formed by triggering, which would result in an age spread of several megayears between the member stars or star groups formed in the sequence.Comment: 2007, ApJ, 657, 88

    On the origin of the O and B-type stars with high velocities II Runaway stars and pulsars ejected from the nearby young stellar groups

    Get PDF
    We use milli-arcsecond accuracy astrometry (proper motions and parallaxes) from Hipparcos and from radio observations to retrace the orbits of 56 runaway stars and nine compact objects with distances less than 700 pc, to identify the parent stellar group. It is possible to deduce the specific formation scenario with near certainty for two cases. (i) We find that the runaway star zeta Ophiuchi and the pulsar PSR J1932+1059 originated about 1 Myr ago in a supernova explosion in a binary in the Upper Scorpius subgroup of the Sco OB2 association. The pulsar received a kick velocity of about 350 km/s in this event, which dissociated the binary, and gave zeta Oph its large space velocity. (ii) Blaauw & Morgan and Gies & Bolton already postulated a common origin for the runaway-pair AE Aur and mu Col, possibly involving the massive highly-eccentric binary iota Ori, based on their equal and opposite velocities. We demonstrate that these three objects indeed occupied a very small volume \sim 2.5Myr ago, and show that they were ejected from the nascent Trapezium cluster. We identify the parent group for two more pulsars: both likely originate in the 50 Myr old association Per OB3, which contains the open cluster alpha Persei. At least 21 of the 56 runaway stars in our sample can be linked to the nearby associations and young open clusters. These include the classical runaways 53 Arietis (Ori OB1), xi Persei (Per OB2), and lambda Cephei (Cep OB3), and fifteen new identifications, amongst which a pair of stars running away in opposite directions from the region containing the lambda Ori cluster. Other currently nearby runaways and pulsars originated beyond 700 pc, where our knowledge of the parent groups is very incomplete.Comment: Accepted for publication in the A&A. 29 pages, 19 figure
    • 

    corecore