88 research outputs found

    Patterns of long‐term vegetation change vary between different types of semi‐natural grasslands in Western and Central Europe

    Get PDF
    Questions: Has plant species richness in semi‐natural grasslands changed over recent decades? Do the temporal trends of habitat specialists differ from those of habitat generalists? Has there been a homogenization of the grassland vegetation? Location: Different regions in Germany and the UK. Methods: We conducted a formal meta‐analysis of re‐survey vegetation studies of semi‐natural grasslands. In total, 23 data sets were compiled, spanning up to 75 years between the surveys, including 13 data sets from wet grasslands, six from dry grasslands and four from other grassland types. Edaphic conditions were assessed using mean Ellenberg indicator values for soil moisture, nitrogen and pH. Changes in species richness and environmental variables were evaluated using response ratios. Results: In most wet grasslands, total species richness declined over time, while habitat specialists almost completely vanished. The number of species losses increased with increasing time between the surveys and were associated with a strong decrease in soil moisture and higher soil nutrient contents. Wet grasslands in nature reserves showed no such changes or even opposite trends. In dry grasslands and other grassland types, total species richness did not consistently change, but the number or proportions of habitat specialists declined. There were also considerable changes in species composition, especially in wet grasslands that often have been converted into intensively managed, highly productive meadows or pastures. We did not find a general homogenization of the vegetation in any of the grassland types. Conclusions: The results document the widespread deterioration of semi‐natural grasslands, especially of those types that can easily be transformed to high production grasslands. The main causes for the loss of grassland specialists are changed management in combination with increased fertilization and nitrogen deposition. Dry grasslands are most resistant to change, but also show a long‐term trend towards an increase in more mesotrophic species

    Nicotinic acetylcholine receptors modulate osteoclastogenesis

    Get PDF
    Background: Our aim was to investigate the role of nicotinic acetylcholine receptors (nAChRs) in in-vitro osteoclastogenesis and in in-vivo bone homeostasis. Methods: The presence of nAChR subunits as well as the in-vitro effects of nAChR agonists were investigated by ex vivo osteoclastogenesis assays, real-time polymerase chain reaction, Western blot and flow cytometry in murine bone marrow-derived macrophages differentiated in the presence of recombinant receptor activator of nuclear factor kappa B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). The bone phenotype of mice lacking various nAChR subunits was investigated by peripheral quantitative computed tomography and histomorphometric analysis. Oscillations in the intracellular calcium concentration were detected by measuring the Fura-2 fluorescence intensity. Results: We could demonstrate the presence of several nAChR subunits in bone marrow-derived macrophages stimulated with RANKL and M-CSF, and showed that they are capable of producing acetylcholine. nAChR ligands reduced the number of osteoclasts as well as the number of tartrate-resistant acidic phosphatase-positive mononuclear cells in a dose-dependent manner. In vitro RANKL-mediated osteoclastogenesis was reduced in mice lacking α7 homomeric nAChR or ÎČ2-containing heteromeric nAChRs, while bone histomorphometry revealed increased bone volume as well as impaired osteoclastogenesis in male mice lacking the α7 nAChR. nAChR ligands inhibited RANKL-induced calcium oscillation, a well-established phenomenon of osteoclastogenesis. This inhibitory effect on Ca2+ oscillation subsequently led to the inhibition of RANKL-induced NFATc1 and c-fos expression after long-term treatment with nicotine. Conclusions: We have shown that the activity of nAChRs conveys a marked effect on osteoclastogenesis in mice. Agonists of these receptors inhibited calcium oscillations in osteoclasts and blocked the RANKL-induced activation of c-fos and NFATc1. RANKL-mediated in-vitro osteoclastogenesis was reduced in α7 knockout mice, which was paralleled by increased tibial bone volume in male mice in vivo. © 2016 Mandl et al

    In vivo magnetic resonance spectroscopy: basic methodology and clinical applications

    Get PDF
    The clinical use of in vivo magnetic resonance spectroscopy (MRS) has been limited for a long time, mainly due to its low sensitivity. However, with the advent of clinical MR systems with higher magnetic field strengths such as 3 Tesla, the development of better coils, and the design of optimized radio-frequency pulses, sensitivity has been considerably improved. Therefore, in vivo MRS has become a technique that is routinely used more and more in the clinic. In this review, the basic methodology of in vivo MRS is described—mainly focused on 1H MRS of the brain—with attention to hardware requirements, patient safety, acquisition methods, data post-processing, and quantification. Furthermore, examples of clinical applications of in vivo brain MRS in two interesting fields are described. First, together with a description of the major resonances present in brain MR spectra, several examples are presented of deviations from the normal spectral pattern associated with inborn errors of metabolism. Second, through examples of MR spectra of brain tumors, it is shown that MRS can play an important role in oncology

    Prognostic value of early, conventional proton magnetic resonance spectroscopy in cooled asphyxiated infants

    Get PDF
    BACKGROUND: Neonatal hypoxic-ischemic encephalopathy (HIE) commonly leads to neurodevelopmental impairment, raising the need for prognostic tools which may guide future therapies in time. Prognostic value of proton MR spectroscopy (H-MRS) between 1 and 46 days of age has been extensively studied; however, the reproducibility and generalizability of these methods are controversial in a general clinical setting. Therefore, we investigated the prognostic performance of conventional H-MRS during first 96 postnatal hours in hypothermia-treated asphyxiated neonates. METHODS: Fifty-one consecutive hypothermia-treated HIE neonates were examined by H-MRS at three echo-times (TE = 35, 144, 288 ms) between 6 and 96 h of age, depending on clinical stability. Patients were divided into favorable (n = 35) and unfavorable (n = 16) outcome groups based on psychomotor and mental developmental index (PDI and MDI, Bayley Scales of Infant Development II) scores (>/= 70 versus < 70 or death, respectively), assessed at 18-26 months of age. Associations between 36 routinely measured metabolite ratios and outcome were studied. Age-dependency of metabolite ratios in whole patient population was assessed. Prognostic performance of metabolite ratios was evaluated by Receiver Operating Characteristics (ROC) analysis. RESULTS: Three metabolite ratios showed significant difference between outcome groups after correction for multiple testing (p < 0.0014): myo-inositol (mIns)/N-acetyl-aspartate (NAA) height, mIns/creatine (Cr) height, both at TE = 35 ms, and NAA/Cr height at TE = 144 ms. Assessment of age-dependency showed that all 3 metabolite ratios (mIns/NAA, NAA/Cr and mIns/Cr) stayed constant during first 96 postnatal hours, rendering them optimal for prediction. ROC analysis revealed that mIns/NAA gives better prediction for outcome than NAA/Cr and mIns/Cr with cut-off values 0.6798 0.6274 and 0.7798, respectively, (AUC 0.9084, 0.8396 and 0.8462, respectively, p < 0.00001); mIns/NAA had the highest specificity (95.24%) and sensitivity (84.62%) for predicting outcome of neonates with HIE any time during the first 96 postnatal hours. CONCLUSIONS: Our findings suggest that during first 96 h of age even conventional H-MRS could be a useful prognostic tool in predicting the outcome of asphyxiated neonates; mIns/NAA was found to be the best and age-independent predictor

    Using incomplete floristic monitoring data from habitat mapping programmes to detect species trends

    Get PDF
    Aim: The loss of biodiversity has raised serious concerns about the entailing losses of ecosystem services. Here, we explore the potential of repeated habitat mapping data to identify floristic changes over time. Using one German federal state as a case study, we assessed floristic changes between the 1980s and 2010s. These habitat data have great potential for analysis because of their high spatial coverage while also posing methodological challenges such as incomplete observation data. We developed a modelling approach that accounts for incomplete observations and explored the ability to detect temporal trends. Location: The Federal State of Schleswig‐Holstein (Germany) Methods: We compiled plant species lists from the earliest (1980s) and most recent (2010s) habitat mapping survey and aligned differing habitat definitions across mapping campaigns. A total of 5,503 mapped polygons, each with a list of species records, intersected the two surveys. We accounted for underrecorded species by assigning occurrence probabilities, based on species co‐occurrence information across all surveys, using Beals' index and tested the robustness of this approach by simulation experiments. For those species with significant increases and decreases in occurrence probability, we linked these trends to the species' functional characteristics. Results: We found a systematic loss of species that are moderately threatened. Species that indicate low nitrogen supply and high soil moisture declined, suggesting a shift towards a more eutrophic and drier landscape. Importantly, assessing specific plant traits associated with losses, we also detected a decrease in species with reddish and blueish flowers and species providing nectar, pointing to a decrease of insect‐pollinated taxa. Main conclusions: The identified changes raise concerns that plant biodiversity has fundamentally changed over the last three decades, with concomitant consequences for ecosystem services, especially pollination. Given the general lack of historical standardized data, our approach for trend analyses using incomplete observation data may be widely applicable to assess long‐term biodiversity change

    Optimization of dual-saturation single bolus acquisition for quantitative cardiac perfusion and myocardial blood flow maps

    Get PDF
    BACKGROUND: In-vivo quantification of cardiac perfusion is of great research and clinical value. The dual-bolus strategy is universally used in clinical protocols but has known limitations. The dual-saturation acquisition strategy has been proposed as a more accurate alternative, but has not been validated across the wide range of perfusion rates encountered clinically. Dual-saturation acquisition also lacks a clinically-applicable procedure for optimizing parameter selection. Here we present a comprehensive validation study of dual-saturation strategy in vitro and in vivo. METHODS: The impact of saturation time and profile ordering in acquisitions was systematically analyzed in a phantom consisting of 15 tubes containing different concentrations of contrast agent. In-vivo experiments in healthy pigs were conducted to evaluate the effect of R2* on the definition of the arterial input function (AIF) and to evaluate the relationship between R2* and R1 variations during first-pass of the contrast agent. Quantification by dual-saturation perfusion was compared with the reference-standard dual-bolus strategy in 11 pigs with different grades of myocardial perfusion. RESULTS: Adequate flow estimation by the dual-saturation strategy is achieved with myocardial tissue saturation times around 100 ms (always <30 ms of AIF), with the lowest echo time, and following a signal model for contrast conversion that takes into account the residual R2* effect and profile ordering. There was a good correlation and agreement between myocardial perfusion quantitation by dual-saturation and dual-bolus techniques (R(2) = 0.92, mean difference of 0.1 ml/min/g; myocardial perfusion ranges between 0.18 and 3.93 ml/min/g). CONCLUSIONS: The dual-saturation acquisition strategy produces accurate estimates of absolute myocardial perfusion in vivo. The procedure presented here can be applied with minimal interference in standard clinical procedures

    A small region in phosducin inhibits G-protein betagamma-subunit function.

    No full text
    G-protein betagamma-subunits (G(betagamma)) are active transmembrane signalling components. Their function recently has been observed to be regulated by the cytosolic protein phosducin. We show here that a small fragment (amino acids 215-232) contained in the C-terminus of phosducin is sufficient for high-affinity interactions with G(betagamma). Corresponding peptides not only disrupt G(betagamma)-G(alpha) interactions, as defined by G(betagamma)-stimulated GTPase activity of alpha(o), but also other G(betagamma)-mediated functions. The NMR structure of a peptide encompassing this region shows a loop exposing the side chains of Glu223 and Tyr224, and peptides with a substitution of either of these amino acids show a complete loss of activity towards G(o). Mutation of this Tyr224 to Ala in full-length phosducin reduced the functional activity of phosducin to that of phosducin's isolated N-terminus, indicating the importance of this residue within the short, structurally defined C-terminal segment. This small peptide derived from phosducin, may represent a model of a G(betagamma) inhibitor, and illustrates the potential of small compounds to affect G(betagamma) functions
    • 

    corecore