79 research outputs found

    The free energy in a class of quantum spin systems and interchange processes

    Full text link
    We study a class of quantum spin systems in the mean-field setting of the complete graph. For spin S=12S=\tfrac12 the model is the Heisenberg ferromagnet, for general spin S12NS\in\tfrac12\mathbb{N} it has a probabilistic representation as a cycle-weighted interchange process. We determine the free energy and the critical temperature (recovering results by T\'oth and by Penrose when S=12S=\tfrac12). The critical temperature is shown to coincide (as a function of SS) with that of the q=2S+1q=2S+1 state classical Potts model, and the phase transition is discontinuous when S1S\geq1.Comment: 22 page

    Der Einfluss der Kapazitätsgröße und -auslastung auf den Kostenverlauf ausgewählter Hilfskostenstellen von Molkereien - Abteilung Dampfversorgung

    Get PDF
    Die Kostenanalyse zur Bestimmung des Einflusses der Kapazitätsgröße und -auslastung auf den Kostenverlauf von Hilfskostenstellen (Hilfsabteilungen) erfolgt mit Hilfe von Modellkalkulationen. Eine spezielle Form der Teilkostenrechnung ermöglicht die Zurechnung der Kosten nach Kostenkategorien (jahresfix, tagesfix, ggf. chargenfix und mengenproportional) auf die entsprechenden Kostenträger (z. B. Kälte, Dampf) der jeweiligen Hilfskostenstelle. Durch computergestützte Simulationen können die Auswirkungen der verschiedenen Kosteneinflußfaktoren im einzelnen quantifiziert werden

    Branch-and-lift algorithm for deterministic global optimization in nonlinear optimal control

    Get PDF
    This paper presents a branch-and-lift algorithm for solving optimal control problems with smooth nonlinear dynamics and potentially nonconvex objective and constraint functionals to guaranteed global optimality. This algorithm features a direct sequential method and builds upon a generic, spatial branch-and-bound algorithm. A new operation, called lifting, is introduced, which refines the control parameterization via a Gram-Schmidt orthogonalization process, while simultaneously eliminating control subregions that are either infeasible or that provably cannot contain any global optima. Conditions are given under which the image of the control parameterization error in the state space contracts exponentially as the parameterization order is increased, thereby making the lifting operation efficient. A computational technique based on ellipsoidal calculus is also developed that satisfies these conditions. The practical applicability of branch-and-lift is illustrated in a numerical example. © 2013 Springer Science+Business Media New York

    General practitioners' attitudes and preparedness towards Clinical Decision Support in e-Prescribing (CDS-eP) adoption in the West of Ireland: a cross sectional study

    Get PDF
    Background: Electronic clinical decision support (CDS) is increasingly establishing its role in evidence-based clinical practice. Considerable evidence supports its enhancement of efficiency in e-Prescribing, but some controversy remains. This study evaluated the practicality and identified the perceived benefits of, and barriers to, its future adoption in the West of Ireland. Methods: This cross sectional study was carried out by means of a 27-part questionnaire sent to 262 registered general practitioners in Counties Galway, Mayo and Roscommon. The survey domains encompassed general information of individual's practice, current use of CDS and the practitioner's attitudes towards adoption of CDS-eP. Descriptive and inferential analyses were performed to analyse the data collected. Results: The overall response rate was 37%. Nearly 92% of respondents employed electronic medical records in their practice. The majority acknowledged the value of electronic CDS in improving prescribing quality (71%) and reducing prescribing errors (84%). Despite a high degree of unfamiliarity (73%), the practitioners were open to the use of CDS-eP (94%) and willing to invest greater resources for its implementation (62%). Lack of a strategic implementation plan (78%) is the main perceived barrier to the incorporation of CDS-eP into clinical practice, followed by i) lack of financial incentives (70%), ii) lack of standardized product software (61%), iii) high sensitivity of drug-drug interaction or medication allergy markers (46%), iv) concern about overriding physicians' prescribing decisions(44%) and v) lack of convincing evidence on the systems' effectiveness (22%). Conclusions: Despite favourable attitudes towards the adoption of CDS-eP, multiple perceived barriers impede its incorporation into clinical practice. These merit further exploration, taking into consideration the structure of the Irish primary health care system, before CDS-eP can be recommended for routine clinical use in the West of Ireland.Healthcare Informatics Society of Ireland (HISI) research bursary 2007-2009Deposited by bulk impor

    The kinematics of swimming and relocation jumps in copepod nauplii

    Get PDF
    Copepod nauplii move in a world dominated by viscosity. Their swimming-by-jumping propulsion mode, with alternating power and recovery strokes of three pairs of cephalic appendages, is fundamentally different from the way other microplankters move. Protozoans move using cilia or flagella, and copepodites are equipped with highly specialized swimming legs. In some species the nauplius may also propel itself more slowly through the water by beating and rotating the appendages in a different, more complex pattern. We use high-speed video to describe jumping and swimming in nauplii of three species of pelagic copepods: Temora longicornis, Oithona davisae and Acartia tonsa. The kinematics of jumping is similar between the three species. Jumps result in a very erratic translation with no phase of passive coasting and the nauplii move backwards during recovery strokes. This is due to poorly synchronized recovery strokes and a low beat frequency relative to the coasting time scale. For the same reason, the propulsion efficiency of the nauplii is low. Given the universality of the nauplius body plan, it is surprising that they seem to be inefficient when jumping, which is different from the very efficient larger copepodites. A slow-swimming mode is only displayed by T. longicornis. In this mode, beating of the appendages results in the creation of a strong feeding current that is about 10 times faster than the average translation speed of the nauplius. The nauplius is thus essentially hovering when feeding, which results in a higher feeding efficiency than that of a nauplius cruising through the water

    Random Walk on Random Infinite Looptrees

    No full text
    Looptrees have recently arisen in the study of critical percolation on the uniform infinite planar triangulation. Here we consider random infinite looptrees defined as the local limit of the looptree associated with a critical Galton-Watson tree conditioned to be large. We study simple random walk on these infinite looptrees by means of providing estimates on volume and resistance growth. We prove that if the offspring distribution of the Galton-Watson process is in the domain of attraction of a stable distribution with index then the spectral dimension of the looptree is 2 alpha/(alpha+1)

    How Classical Music is Better than Popular Music

    No full text

    The crystal structure of Lactococcus lactis dihydroorotate dehydrogenase A complexed with the enzyme reaction product throws light on its enzymatic function.

    No full text
    Dihydroorotate dehydrogenases (DHODs) catalyze the oxidation of (S)-dihydroorotate to orotate, the fourth step and only redox reaction in the de novo biosynthesis of pyrimidine nucleotides. A description is given of the crystal structure of Lactococcus lactis dihydroorotate dehydrogenase A (DHODA) complexed with the product of the enzyme reaction orotate. The structure of the complex to 2.0 A resolution has been compared with the structure of the native enzyme. The active site of DHODA is known to contain a water filled cavity buried beneath a highly conserved and flexible loop. In the complex the orotate displaces the water molecules from the active site and stacks above the DHODA flavin isoalloxazine ring, causing only small movements of the surrounding protein residues. The orotate is completely buried beneath the protein surface, and the orotate binding causes a significant reduction in the mobility of the active site loop. The orotate is bound by four conserved asparagine side chains (Asn 67, Asn 127, Asn 132, and Asn 193), the side chains of Lys 43 and Ser 194, and the main chain NH groups of Met 69, Gly 70, and Leu 71. Of these the Lys 43 side chain makes hydrogen bonds to both the flavin isoalloxazine ring and the carboxylate group of the orotate. Potential interactions with bound dihydroorotate are considered using the orotate complex as a basis for molecular modeling. The role of Cys 130 as the active site base is discussed, and the sequence conservation of the active site residues across the different families of DHODs is reviewed, along with implications for differences in substrate binding and in the catalytic mechanisms between these families
    corecore