92 research outputs found

    Learning Impact of a Virtual Brain Electrical Activity Simulator Among Neurophysiology Students: Mixed-Methods Intervention Study

    Get PDF
    Background:Virtual simulation is the re-creation of reality depicted on a computer screen. It offers the possibility to exercise motor and psychomotor skills. In biomedical and medical education, there is an attempt to find new ways to support students’ learning in neurophysiology. Traditionally, recording electroencephalography (EEG) has been learned through practical hands-on exercises. To date, virtual simulations of EEG measurements have not been used.Objective:This study aimed to examine the development of students’ theoretical knowledge and practical skills in the EEG measurement when using a virtual EEG simulator in biomedical laboratory science in the context of a neurophysiology course.Methods:A computer-based EEG simulator was created. The simulator allowed virtual electrode placement and EEG graph interpretation. The usefulness of the simulator for learning EEG measurement was tested with 35 participants randomly divided into three equal groups. Group 1 (experimental group 1) used the simulator with fuzzy feedback, group 2 (experimental group 2) used the simulator with exact feedback, and group 3 (control group) did not use a simulator. The study comprised pre- and posttests on theoretical knowledge and practical hands-on evaluation of EEG electrode placement.Results:The Wilcoxon signed-rank test indicated that the two groups that utilized a computer-based electrode placement simulator showed significant improvement in both theoretical knowledge (Z=1.79, P=.074) and observed practical skills compared with the group that studied without a simulator.Conclusions:Learning electrode placement using a simulator enhances students’ ability to place electrodes and, in combination with practical hands-on training, increases their understanding of EEG measurement.</p

    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets

    Time lagged information theoretic approaches to the reverse engineering of gene regulatory networks

    Get PDF
    Background: A number of models and algorithms have been proposed in the past for gene regulatory network (GRN) inference; however, none of them address the effects of the size of time-series microarray expression data in terms of the number of time-points. In this paper, we study this problem by analyzing the behaviour of three algorithms based on information theory and dynamic Bayesian network (DBN) models. These algorithms were implemented on different sizes of data generated by synthetic networks. Experiments show that the inference accuracy of these algorithms reaches a saturation point after a specific data size brought about by a saturation in the pair-wise mutual information (MI) metric; hence there is a theoretical limit on the inference accuracy of information theory based schemes that depends on the number of time points of micro-array data used to infer GRNs. This illustrates the fact that MI might not be the best metric to use for GRN inference algorithms. To circumvent the limitations of the MI metric, we introduce a new method of computing time lags between any pair of genes and present the pair-wise time lagged Mutual Information (TLMI) and time lagged Conditional Mutual Information (TLCMI) metrics. Next we use these new metrics to propose novel GRN inference schemes which provides higher inference accuracy based on the precision and recall parameters. Results: It was observed that beyond a certain number of time-points (i.e., a specific size) of micro-array data, the performance of the algorithms measured in terms of the recall-to-precision ratio saturated due to the saturation in the calculated pair-wise MI metric with increasing data size. The proposed algorithms were compared to existing approaches on four different biological networks. The resulting networks were evaluated based on the benchmark precision and recall metrics and the results favour our approach. Conclusions: To alleviate the effects of data size on information theory based GRN inference algorithms, novel time lag based information theoretic approaches to infer gene regulatory networks have been proposed. The results show that the time lags of regulatory effects between any pair of genes play an important role in GRN inference schemes

    Bone Morphogenetic Protein (BMP)-7 expression is decreased in human hypertensive nephrosclerosis

    Get PDF
    Background: Bone Morphogenetic Protein (BMP)-7 is protective in different animal models of acute and chronic kidney disease. Its role in human kidneys, and in particular hypertensive nephrosclerosis, has thus far not been described. Methods: BMP-7 mRNA was quantified using real-time PCR and localised by immunostaining in tissue samples from normal and nephrosclerotic human kidneys. The impact of angiotensin (AT)-II and the AT-II receptor antagonist telmisartan on BMP-7 mRNA levels and phosphorylated Smad 1/5/8 (pSmad 1/5/8) expression was quantified in proximal tubular cells (HK-2). Functional characteristics of BMP-7 were evaluated by testing its influence on TGF-b induced epithelial-to-mesenchymal transition (EMT), expression of TGF-b receptor type I (TGF-bRI) and phosphorylated Smad 2 (pSmad 2) as well as on TNF-a induced apoptosis of proximal tubular cells. Results: BMP-7 was predominantly found in the epithelia of the distal tubule and the collecting duct and was less abundant in proximal tubular cells. In sclerotic kidneys, BMP-7 was significantly decreased as demonstrated by real-time PCR and immunostaining. AT-II stimulation in HK-2 cells led to a significant decrease of BMP-7 and pSmad 1/5/8, which was partially ameliorated upon co-incubation with telmisartan. Only high concentrations of BMP-7 (100 ng/ml) were able to reverse TNF-a-induced apoptosis and TGF-b-induced EMT in human proximal tubule cells possibly due to a decreased expression of TGF-bRI. In addition, BMP-7 was able to reverse TGF-b-induced phosphorylation of Smad 2. Conclusions: The findings suggest a protective role for BMP-7 by counteracting the TGF-b and TNF-a-induced negative effects. The reduced expression of BMP-7 in patients with hypertensive nephrosclerosis may imply loss of protection and regenerative potential necessary to counter the disease

    Periodontal conditions, oral Candida albicans and salivary proteins in type 2 diabetic subjects with emphasis on gender

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The association between periodontal conditions, oral yeast colonisation and salivary proteins in subjects with type 2 diabetes (T2D) is not yet documented. The present study aimed to assess the relationship between these variables in type 2 diabetic subjects with reference to gender.</p> <p>Methods</p> <p>Fifty-eight type 2 diabetic subjects (23 males and 35 females) with random blood glucose level ≥ 11.1 mmol/L were investigated. Periodontal conditions (plaque index [PI], bleeding on probing [BOP], probing pocket depth [PD] (4 to 6 mm and ≥ 6 mm), oral yeasts, salivary immunoglobulin (Ig) A, IgG and total protein concentrations, and number of present teeth were determined.</p> <p>Results</p> <p>Periodontal conditions (PI [<it>p </it>< 0.00001], BOP [<it>p </it>< 0.01] and PD of 4 to 6 mm [<it>p </it>< 0.001], salivary IgG (μg)/mg protein (<it>p </it>< 0.001) and salivary total protein concentrations (<it>p </it>< 0.05) were higher in type 2 diabetic females with <it>Candida albicans </it>(<it>C. albicans</it>) colonisation compared to males in the same group. Type 2 diabetic females with <it>C. albicans </it>colonisation had more teeth compared to males in the same group (<it>p </it>< 0.0001).</p> <p>Conclusion</p> <p>Clinical and salivary parameters of periodontal inflammation (BOP and IgG (μg)/mg protein) were higher in type 2 diabetic females with oral <it>C. albicans </it>colonisation compared to males in the same group. Further studies are warranted to evaluate the association of gender with these variables in subjects with T2D.</p

    Islet expression of the DNA repair enzyme 8-oxoguanosine DNA glycosylase (Ogg1) in human type 2 diabetes

    Get PDF
    BACKGROUND: It has become increasingly clear that β-cell failure plays a critical role in the pathogenesis of type 2 diabetes. Free-radical mediated β-cell damage has been intensively studied in type 1 diabetes, but not in human type 2 diabetes. Therefore, we studied the protein expression of the DNA repair enzyme Ogg1 in pancreases from type 2 diabetics. Ogg1 was studied because it is the major enzyme involved in repairing 7,8-dihydro-8-oxoguanosine DNA adducts, a lesion previously observed in a rat model of type 2 diabetes. Moreover, in a gene expression screen, Ogg1 was over-expressed in islets from a human type 2 diabetic. METHODS: Immunofluorescent staining of Ogg1 was performed on pancreatic specimens from healthy controls and patients with diabetes for 2–23 years. The intensity and islet area stained for Ogg1 was evaluated by semi-quantitative scoring. RESULTS: Both the intensity and the area of islet Ogg1 staining were significantly increased in islets from the type 2 diabetic subjects compared to the healthy controls. A correlation between increased Ogg1 fluorescent staining intensity and duration of diabetes was also found. Most of the staining observed was cytoplasmic, suggesting that mitochondrial Ogg1 accounts primarily for the increased Ogg1 expression. CONCLUSION: We conclude that oxidative stress related DNA damage may be a novel important factor in the pathogenesis of human type 2 diabetes. An increase of Ogg1 in islet cell mitochondria is consistent with a model in which hyperglycemia and consequent increased β-cell oxidative metabolism lead to DNA damage and the induction of Ogg1 expression

    Imaging Immune Surveillance of Individual Natural Killer Cells Confined in Microwell Arrays

    Get PDF
    New markers are constantly emerging that identify smaller and smaller subpopulations of immune cells. However, there is a growing awareness that even within very small populations, there is a marked functional heterogeneity and that measurements at the population level only gives an average estimate of the behaviour of that pool of cells. New techniques to analyze single immune cells over time are needed to overcome this limitation. For that purpose, we have designed and evaluated microwell array systems made from two materials, polydimethylsiloxane (PDMS) and silicon, for high-resolution imaging of individual natural killer (NK) cell responses. Both materials were suitable for short-term studies (<4 hours) but only silicon wells allowed long-term studies (several days). Time-lapse imaging of NK cell cytotoxicity in these microwell arrays revealed that roughly 30% of the target cells died much more rapidly than the rest upon NK cell encounter. This unexpected heterogeneity may reflect either separate mechanisms of killing or different killing efficiency by individual NK cells. Furthermore, we show that high-resolution imaging of inhibitory synapse formation, defined by clustering of MHC class I at the interface between NK and target cells, is possible in these microwells. We conclude that live cell imaging of NK-target cell interactions in multi-well microstructures are possible. The technique enables novel types of assays and allow data collection at a level of resolution not previously obtained. Furthermore, due to the large number of wells that can be simultaneously imaged, new statistical information is obtained that will lead to a better understanding of the function and regulation of the immune system at the single cell level

    Involvement of global genome repair, transcription coupled repair, and chromatin remodeling in UV DNA damage response changes during development

    Get PDF
    Nucleotide Excision Repair (NER), which removes a variety of helix-distorting lesions from DNA, is initiated by two distinct DNA damage-sensing mechanisms. Transcription Coupled Repair (TCR) removes damage from the active strand of transcribed genes and depends on the SWI/SNF family protein CSB. Global Genome Repair (GGR) removes damage present elsewhere in the genome and depends on damage recognition by the XPC/RAD23/Centrin2 complex. Currently, it is not well understood to what extent both pathways contribute to genome maintenance and cell survival in a developing organism exposed to UV light. Here, we show that eukaryotic NER, initiated by two distinct subpathways, is well conserved in the nematode Caenorhabditis elegans. In C. elegans, involvement of TCR and GGR in the UV-induced DNA damage response changes during development. In germ cells and early embryos, we find that GGR is the major pathway contributing to normal development and survival after UV irradiation, whereas in later developmental stages TCR is predominantly engaged. Furthermore, we identify four ISWI/Cohesin and four SWI/SNF family chromatin remodeling factors that are implicated in the UV damage response in a developmental stage dependent manner. These in vivo studies strongly suggest that involvement of different repair pathways and chromatin remodeling proteins in UV-induced DNA repair depends on developmental stage of cells

    Improved Learning and Memory in Aged Mice Deficient in Amyloid β-Degrading Neutral Endopeptidase

    Get PDF
    BACKGROUND: Neutral endopeptidase, also known as neprilysin and abbreviated NEP, is considered to be one of the key enzymes in initial human amyloid-beta (Abeta) degradation. The aim of our study was to explore the impact of NEP deficiency on the initial development of dementia-like symptoms in mice. METHODOLOGY/PRINCIPAL FINDINGS: We found that while endogenous Abeta concentrations were elevated in the brains of NEP-knockout mice at all investigated age groups, immunohistochemical analysis using monoclonal antibodies did not detect any Abeta deposits even in old NEP knockout mice. Surprisingly, tests of learning and memory revealed that the ability to learn was not reduced in old NEP-deficient mice but instead had significantly improved, and sustained learning and memory in the aged mice was congruent with improved long-term potentiation (LTP) in brain slices of the hippocampus and lateral amygdala. Our data suggests a beneficial effect of pharmacological inhibition of cerebral NEP on learning and memory in mice due to the accumulation of peptides other than Abeta degradable by NEP. By conducting degradation studies and peptide measurements in the brain of both genotypes, we identified two neuropeptide candidates, glucagon-like peptide 1 and galanin, as first potential candidates to be involved in the improved learning in aged NEP-deficient mice. CONCLUSIONS/SIGNIFICANCE: Thus, the existence of peptides targeted by NEP that improve learning and memory in older individuals may represent a promising avenue for the treatment of neurodegenerative diseases
    corecore