9 research outputs found

    Prospective subgroup analyses of the randomized MCL-002 (SPRINT) study: lenalidomide versus investigator's choice in relapsed or refractory mantle cell lymphoma.

    Get PDF
    In the mantle cell lymphoma (MCL)-002 study, lenalidomide demonstrated significantly improved median progression-free survival (PFS) compared with investigator's choice (IC) in patients with relapsed/refractory MCL. Here we present the long-term follow-up data and results of preplanned subgroup exploratory analyses from MCL-002 to evaluate the potential impact of demographic factors, baseline clinical characteristics and prior therapies on PFS. In MCL-002, patients with relapsed/refractory MCL were randomized 2:1 to receive lenalidomide (25 mg/day orally on days 1-21; 28-day cycles) or single-agent IC therapy (rituximab, gemcitabine, fludarabine, chlorambucil or cytarabine). The intent-to-treat population comprised 254 patients (lenalidomide, n = 170; IC, n = 84). Subgroup analyses of PFS favoured lenalidomide over IC across most characteristics, including risk factors, such as high MCL International Prognostic Index score, age ≥65 years, high lactate dehydrogenase (LDH), stage III/IV disease, high tumour burden, and refractoriness to last prior therapy. By multivariate Cox regression analysis, factors associated with significantly longer PFS (other than lenalidomide treatment) included normal LDH levels (P < 0·001), nonbulky disease (P = 0·045), <3 prior antilymphoma treatments (P = 0·005), and ≥6 months since last prior treatment (P = 0·032). Overall, lenalidomide improved PFS versus single-agent IC therapy in patients with relapsed/refractory MCL, irrespective of many demographic factors, disease characteristics and prior treatment history

    Pomalidomide, bortezomib, and dexamethasone for multiple myeloma previously treated with lenalidomide (OPTIMISMM): outcomes by prior treatment at first relapse

    No full text
    In the phase 3 OPTIMISMM trial, pomalidomide, bortezomib, and dexamethasone (PVd) demonstrated superior efficacy vs bortezomib and dexamethasone (Vd) in patients with relapsed or refractory multiple myeloma previously treated with lenalidomide, including those refractory to lenalidomide. This analysis evaluated outcomes in patients at first relapse (N = 226) by lenalidomide-refractory status, prior bortezomib exposure, and prior stem cell transplant (SCT). Second-line PVd significantly improved PFS vs Vd in lenalidomide-refractory (17.8 vs 9.5 months; P = 0.0276) and lenalidomide-nonrefractory patients (22.0 vs 12.0 months; P = 0.0491), patients with prior bortezomib (17.8 vs 12.0 months; P = 0.0068), and patients with (22.0 vs 13.8 months; P = 0.0241) or without (16.5 vs 9.5 months; P = 0.0454) prior SCT. In patients without prior bortezomib, median PFS was 20.7 vs 9.5 months (P = 0.1055). Significant improvement in overall response rate was also observed with PVd vs Vd in lenalidomide-refractory (85.9% vs 50.8%; P &lt; 0.001) and lenalidomide-nonrefractory (95.7% vs 60.0%; P &lt; 0.001) patients, with similar results regardless of prior bortezomib or SCT. No new safety signals were observed. These data demonstrate the benefit of PVd at first relapse, including immediately after upfront lenalidomide treatment failure and other common first-line treatments. © 2020, The Author(s)

    Health-related quality-of-life results from the phase 3 OPTIMISMM study: pomalidomide, bortezomib, and low-dose dexamethasone versus bortezomib and low-dose dexamethasone in relapsed or refractory multiple myeloma

    No full text
    In the randomized phase-3 OPTIMISMM study, the addition of pomalidomide to bortezomib and low-dose dexamethasone (PVd) resulted in significant improvement in progression-free survival (PFS) in lenalidomide-pretreated patients with relapsed or refractory multiple myeloma (RRMM), including lenalidomide refractory patients. Here, we report health-related quality of life (HRQoL) results from this trial. Patients received PVd or Vd in 21-day cycles until disease progression or discontinuation. HRQoL was assessed using the EORTC QLQ-C30, QLQ-MY20, and EQ-5D-3L instruments on day 1 of each treatment cycle. Mean score changes for global QoL, physical functioning, fatigue, side effects of treatment domains, and EQ-5D-3L index were generally stable over time across treatment arms. The proportion of patients who experienced clinically meaningful worsening in global QoL and other domains of interest was similar. These HRQoL results with PVd along with previously demonstrated improvement in PFS vs Vd continue to support its use in patients with RRMM. © 2020 Informa UK Limited, trading as Taylor &amp; Francis Group

    Pomalidomide, bortezomib, and dexamethasone for patients with relapsed or refractory multiple myeloma previously treated with lenalidomide (OPTIMISMM): a randomised, open-label, phase 3 trial

    No full text
    Background As lenalidomide becomes increasingly established for upfront treatment of multiple myeloma, patients refractory to this drug represent a population with an unmet need. The combination of pomalidomide, bortezomib, and dexamethasone has shown promising results in phase 1/2 trials of patients with relapsed or refractory multiple myeloma. We aimed to assess the efficacy and safety of this triplet regimen in patients with relapsed or refractory multiple myeloma who previously received lenalidomide.Methods We did a randomised, open-label, phase 3 trial at 133 hospitals and research centres in 21 countries. We enrolled patients (aged &gt;= 18 years) with a diagnosis of multiple myeloma and measurable disease, an Eastern Cooperative Oncology Group performance status of 0-2, who received one to three previous regimens, including a lenalidomide-containing regimen for at least two consecutive cycles. We randomly assigned patients (1:1) to bortezomib and dexamethasone with or without pomalidomide using a permutated blocked design in blocks of four, stratified according to age, number of previous regimens, and concentration of beta(2) microglobulin at screening. Bortezomib (1.3 mg/m(2)) was administered intravenously until protocol amendment 1 then either intravenously or subcutaneously on days 1,4, 8, and 11 for the first eight cycles and subsequently on days 1 and 8. Dexamethasone (20 mg [10 mg if age &gt;75 years]) was administered orally on the same days as bortezomib and the day after. Patients allocated pomalidomide received 4 mg orally on days 1-14. Treatment cycles were every 21 days. The primary endpoint was progression-free survival in the intention-to-treat population, as assessed by an independent review committee. Safety was assessed in all patients who received at least one dose of study medication. This trial is registered at ClinicalTrials.gov, number NCT01734928; patients are no longer being enrolled.Findings Between Jan 7, 2013, and May 15,2017,559 patients were enrolled. 281 patients were assigned pomalidomide, bortezomib, and dexamethasone and 278 were allocated bortezomib and dexamethasone. Median follow-up was 15.9 months (IQR 9.9-21.7). Pomalidomide, bortezomib, and dexamethasone significantly improved progression-free survival compared with bortezomib and dexamethasone (median 11.20 months [95% CI 9.66-13-73] vs 7.10 months [5.88-8-48]; hazard ratio 0.61, 95% CI 0.49-0-77; p&lt;0-0001). 278 patients received at least one dose of pomalidomide, bortezomib, and dexamethasone and 270 patients received at least one dose of bortezomib and dexamethasone, and these patients were included in safety assessments. The most common grade 3 or 4 treatment-emergent adverse events were neutropenia (116 [42%] of 278 patients vs 23 [9%1 of 270 patients; nine p.m vs no patients had febrile neutropenia), infections (86 [31%] vs 48 118%1), and thrombocytopenia (76 [27%1 vs 79 [29%]). Serious adverse events were reported in 159 (57%) of 278 patients versus 114 (42%) of 270 patients. Eight deaths were related to treatment; six (2%) were recorded in patients who received pomalidomide, bortezomib, and dexamethasone (pneumonia [n=2], unknown cause [n=2], cardiac arrest [n=1], cardiorespiratory arrest [n=11) and two (1%) were reported in patients who received bortezomib and dexamethasone (pneumonia In=11, hepatic encephalopathy [n=1.]).Interpretation Patients with relapsed or refractory multiple myeloma who previously received lenalidomide had significantly improved progression-free survival when treated with pomalidomide, bortezomib, and dexamethasone compared with bortezomib and dexamethasone. Adverse events accorded with the individual profiles of pomalidomide, bortezomib, and dexamethasone. This study supports use of pomalidomide, bortezomib, and dexamethasone as a treatment option in patients with relapsed or refractory multiple myeloma who previously received lenalidomide. Copyright (C) 2019 Elsevier Ltd. All rights reserved

    Pomalidomide, bortezomib, and dexamethasone for patients with relapsed or refractory multiple myeloma previously treated with lenalidomide (OPTIMISMM): a randomised, open-label, phase 3 trial

    No full text
    BACKGROUND: As lenalidomide becomes increasingly established for upfront treatment of multiple myeloma, patients refractory to this drug represent a population with an unmet need. The combination of pomalidomide, bortezomib, and dexamethasone has shown promising results in phase 1/2 trials of patients with relapsed or refractory multiple myeloma. We aimed to assess the efficacy and safety of this triplet regimen in patients with relapsed or refractory multiple myeloma who previously received lenalidomide. METHODS: We did a randomised, open-label, phase 3 trial at 133 hospitals and research centres in 21 countries. We enrolled patients (aged 6518 years) with a diagnosis of multiple myeloma and measurable disease, an Eastern Cooperative Oncology Group performance status of 0-2, who received one to three previous regimens, including a lenalidomide-containing regimen for at least two consecutive cycles. We randomly assigned patients (1:1) to bortezomib and dexamethasone with or without pomalidomide using a permutated blocked design in blocks of four, stratified according to age, number of previous regimens, and concentration of \u3b2(2) microglobulin at screening. Bortezomib (1\ub73 mg/m(2)) was administered intravenously until protocol amendment 1 then either intravenously or subcutaneously on days 1, 4, 8, and 11 for the first eight cycles and subsequently on days 1 and 8. Dexamethasone (20 mg [10 mg if age &gt;75 years]) was administered orally on the same days as bortezomib and the day after. Patients allocated pomalidomide received 4 mg orally on days 1-14. Treatment cycles were every 21 days. The primary endpoint was progression-free survival in the intention-to-treat population, as assessed by an independent review committee. Safety was assessed in all patients who received at least one dose of study medication. This trial is registered at ClinicalTrials.gov, number NCT01734928; patients are no longer being enrolled. FINDINGS: Between Jan 7, 2013, and May 15, 2017, 559 patients were enrolled. 281 patients were assigned pomalidomide, bortezomib, and dexamethasone and 278 were allocated bortezomib and dexamethasone. Median follow-up was 15\ub79 months (IQR 9\ub79-21\ub77). Pomalidomide, bortezomib, and dexamethasone significantly improved progression-free survival compared with bortezomib and dexamethasone (median 11\ub720 months [95% CI 9\ub766-13\ub773] vs 7\ub710 months [5\ub788-8\ub748]; hazard ratio 0\ub761, 95% CI 0\ub749-0\ub777; p&lt;0\ub70001). 278 patients received at least one dose of pomalidomide, bortezomib, and dexamethasone and 270 patients received at least one dose of bortezomib and dexamethasone, and these patients were included in safety assessments. The most common grade 3 or 4 treatment-emergent adverse events were neutropenia (116 [42%] of 278 patients vs 23 [9%] of 270 patients; nine [3%] vs no patients had febrile neutropenia), infections (86 [31%] vs 48 [18%]), and thrombocytopenia (76 [27%] vs 79 [29%]). Serious adverse events were reported in 159 (57%) of 278 patients versus 114 (42%) of 270 patients. Eight deaths were related to treatment; six (2%) were recorded in patients who received pomalidomide, bortezomib, and dexamethasone (pneumonia [n=2], unknown cause [n=2], cardiac arrest [n=1], cardiorespiratory arrest [n=1]) and two (1%) were reported in patients who received bortezomib and dexamethasone (pneumonia [n=1], hepatic encephalopathy [n=1]). INTERPRETATION: Patients with relapsed or refractory multiple myeloma who previously received lenalidomide had significantly improved progression-free survival when treated with pomalidomide, bortezomib, and dexamethasone compared with bortezomib and dexamethasone. Adverse events accorded with the individual profiles of pomalidomide, bortezomib, and dexamethasone. This study supports use of pomalidomide, bortezomib, and dexamethasone as a treatment option in patients with relapsed or refractory multiple myeloma who previously received lenalidomide. FUNDING: Celgene
    corecore