Prospective subgroup analyses of the randomized MCL-002 (SPRINT) study: lenalidomide versus investigator's choice in relapsed or refractory mantle cell lymphoma

Luca Arcaini,¹ Thierry Lamy,² Jan Walewski,³ David Belada,⁴ Jiri Mayer,⁵ John Radford,⁶ Wojciech Jurczak,⁷ Franck Morschhauser,⁸ Julia Alexeeva,⁹ Simon Rule,¹⁰ José Cabeçadas,¹¹ Elias Campo,¹² Stefano A. Pileri,¹³ Tsvetan Biyukov,¹⁴ Meera Patturajan,¹⁵ Marie-Laure Casadebaig Bravo,¹⁴ and Marek Trněný¹⁶ on behalf of the SPRINT Trial Investigators

¹Department of Molecular Medicine, University of Pavia and Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy

²Department of Hematology, Hôpital Pontchaillou, Rennes, France

³Department of Lymphoid Malignancies, Maria Sklodowska-Curie Memorial Institute and Oncology Centre, Warsaw, Poland

⁴Fourth Department of Internal Medicine, Hematology, Charles University Hospital and Faculty of Medicine, Hradec Králové, Czech Republic

⁵Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic

⁶The University of Manchester and the Christie NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom

⁷Department of Hematology, Jagiellonian University Medical College, Kraków, Poland ⁸Department of Hematology, Hôpital Claude Huriez, EA 7365 GRITA, Lille, France ⁹Department of Hematology Research, Federal Medical Research Center, Saint Petersburg, Russia

¹⁰Department of Hematology, Derriford Hospital, Plymouth, United Kingdom ¹¹Serviço de Anatomia Patológica, Instituto Português de Oncologia de Lisboa Francisco Gentil, Lisboa, Portugal

¹²Hematopathology Unit, Hospital Clinic, University of Barcelona, Barcelona, Spain ¹³Unit of Haematopathology, European Institute of Oncology, Milan, Italy

¹⁴Clinical Research and Development, Celgene Sàrl, Boudry, Switzerland

¹⁵Clinical Research and Development, Celgene Corporation, Summit, NJ, United States ¹⁶Department of Hematology, Charles University Hospital, Prague, Czech Republic

Correspondence:	Prof. Luca Arcaini
-	Department of Molecular Medicine
	University of Pavia
	Department of Hematology Oncology
	Fondazione IRCCS Policlinico San Matteo
	Pavia, Italy
	Viale Golgi, 19 27100 Pavia
	Phone: +39 0382 526263
	E-mail: luca.arcaini@unipv.it

Running short title: MCL-002 subgroup analysis of lenalidomide versus IC in MCL

BJH Word Counts Running short title: 58 characters with spaces (maximum 60) Summary: 198 (maximum 200 words) Main Text: 2878 words (no specified limit) References: 15 Tables/figures: 2 Tables, 3 Figures Supplementary information: 1 supplementary table and 1 supplementary figure

Summary

In the MCL-002 study, lenalidomide demonstrated significantly improved median progression-free survival (PFS) compared with investigator's choice (IC) in patients with relapsed/refractory mantle cell lymphoma (MCL). Here we provide long-term follow-up data and results of preplanned subgroup exploratory analyses from MCL-002 to evaluate the potential impact of demographic factors, baseline clinical characteristics, and prior therapies on PFS. In MCL-002, patients with relapsed/refractory MCL were randomized 2:1 to receive lenalidomide (25 mg/day orally on days 1-21: 28-day cycles) or single-agent IC therapy (rituximab, gemcitabine, fludarabine, chlorambucil, or cytarabine). The intent-to-treat population comprised 254 patients (lenalidomide, n=170; IC, n=84). Subgroup analyses of PFS favored lenalidomide over IC across most characteristics, including risk factors such as high MCL International Prognostic Index score, age ≥65 years, high lactate dehydrogenase (LDH), stage III/IV disease, high tumor burden, and refractoriness to last prior therapy. By multivariate Cox regression analysis, factors associated with significantly longer PFS-other than lenalidomide treatment—included normal LDH levels (P<0.001), nonbulky disease (P=0.045), <3 prior antilymphoma treatments (P=0.005), and ≥ 6 months since last prior treatment (P=0.032). Overall, lenalidomide improved PFS versus single-agent IC therapy in patients with relapsed/refractory MCL, irrespective of many demographic factors, disease characteristics, and prior treatment history.

Keywords: lenalidomide; mantle cell lymphoma; non-Hodgkin lymphoma

Introduction

Mantle cell lymphoma (MCL) accounts for ~6% of all cases of non-Hodgkin lymphoma (NHL) and typically presents as advanced-stage disease in patients over 60 years of age (Avivi and Goy 2015). First-line dose-intensive chemoimmunotherapy with or without stem cell transplantation leads to progression-free survival (PFS) improvement in younger patients with MCL and an overall fit status (Dreyling, *et al* 2014). Older patients with multiple comorbidities are usually treated with less aggressive regimens. MCL typically relapses and becomes increasingly more challenging to manage over the course of the disease. With current therapies in the relapsed/refractory setting (bortezomib, temsirolimus, lenalidomide, and ibrutinib), median overall survival (OS) following relapse is ~2 years (Avivi and Goy 2015). While multiple treatment options are available, some with proven benefit in randomized trials (eg, lenalidomide, ibrutinib), their role in the standard of care for relapsed/refractory disease and the best possible treatment sequence remains to be defined (Avivi and Goy 2015, Dreyling, *et al* 2014).

Lenalidomide is an oral IMiD[®] immunomodulatory agent, with direct and immunemediated mechanisms of action (Gribben, *et al* 2015) and has shown clinical activity and safety in multiple studies, including 2 single-arm, phase II trials (NHL-002 and NHL-003) in heavily pretreated patients with relapsed/refractory aggressive NHL, including MCL (Habermann, *et al* 2009, Zinzani, *et al* 2013). Subsequently in the single-arm, phase II MCL-001 (EMERGE) study in 134 patients with MCL who had relapsed during treatment with or developed disease refractory disease to bortezomib, lenalidomide treatment resulted in an overall response rate (ORR) of 28%, with a median response duration of 16.6 months (Goy, *et al* 2015, Goy, *et al* 2013). More recently, in the

randomized, open-label, multicenter, phase II MCL-002 (SPRINT) study, the lenalidomide arm had a statistically significant and clinically meaningful improvement in the primary endpoint of PFS compared with investigator's choice (IC) of single-agent therapy (rituximab, gemcitabine, fludarabine, chlorambucil, or cytarabine), with a manageable safety profile (Trneny, *et al* 2016). This primary analysis of MCL-002 which had a cutoff date of 07March2014 and a median follow-up of 15.9 months for the overall study population—found a median PFS of 8.7 months for lenalidomide versus 5.2 months for IC (hazard ratio [HR] 0.61, 95% CI 0.44-0.84; P = 0.004). Per the study protocol, follow-up to MCL-002 continues until the death of 70% of patients, median follow-up of responding patients is greater than 2 years, median duration of response has been reached, or 4 years have passed from last patient randomization, whichever comes later.

In the present report, we provide long-term follow-up data and results of preplanned subgroup exploratory analyses from the MCL-002 study to evaluate the potential impact of demographic factors, baseline clinical characteristics, and prior therapies on PFS in patients with relapsed/refractory MCL randomized to receive lenalidomide versus IC.

Patients and methods

Study design

The methodology for MCL-002 (ClinicalTrials.gov identifier, NCT00875667) has been previously described (Trneny, et al 2016). Key inclusion criteria were minimum age 18 years, Eastern Cooperative Oncology Group (ECOG) performance status (PS) of 0-2, histologically confirmed MCL with cyclin D1 overexpression by immunohistochemistry, measurable disease ≥ 2 cm in the longest diameter, refractory to prior therapy or ≤ 3 relapses and had documented progressive disease after ≥1 prior combination chemotherapy regimen with an alkylating agent and an anthracycline, cytarabine, and/or fludarabine (with or without rituximab); and ineligibility for intensive chemotherapy or stem cell transplantation (SCT). Patients were stratified by time from diagnosis (<3 versus \geq 3 years), time from last antilymphoma therapy (<6 versus \geq 6 months), and prior autologous SCT and randomized 2:1 to lenalidomide or IC. Oral lenalidomide was initiated at 25 mg/day, days 1-21 of each 28-day cycle until progressive disease (PD) or as tolerated. Rituximab and chlorambucil were administered until PD or unacceptable toxicity, whereas gemcitabine, fludarabine, and cytarabine were given for ≤ 6 cycles. Patients randomized to IC were allowed to cross over to lenalidomide following documented PD.

All patients provided written informed consent prior to study initiation. The study protocol and its amendments were approved by an institutional review board or independent ethics committee, or centrally if required by national regulations, and were conducted in accordance with the ethical principles of the Declaration of Helsinki and in compliance with Good Clinical Practice.

Post hoc assessments

As prospectively outlined in the study protocol, planned analyses for longer follow-up were performed by investigator assessment to evaluate PFS in the overall study population and for prespecified subgroups at baseline (i.e., the time of randomization unless otherwise stated). These subgroups are grouped in 3 categories based on their association with MCL International Prognostic Index (MIPI) scoring, other patient characteristics, and treatment history. Specific parameters and cut-off/comparison values within each subgroup are defined in supplementary Table SI.

We evaluated PFS in the intent-to-treat (ITT) population which included all randomized patients irrespective of receipt of study treatment. Computed tomography (CT) scans (or magnetic resonance imaging if CT was contraindicated) were performed every 2 cycles (±7 days) for 6 months and then every 90 days (±15 days) until documented PD or death.

Statistical analyses

PFS was characterized by Kaplan-Meier estimates with *P* values per log-rank test with determination of median values and 95% confidence interval (CI). Univariate and multivariate Cox regression models evaluated whether baseline subgroup factors were predictive of the risk of progression or death. Variables with a *P* value <0.20 by univariate analysis were selected for multivariate analysis. Final variables were selected using a stepwise selection method with entry level *P* = 0.20 and stay level *P* = 0.15. ORR was defined according to Cheson et al (Cheson, *et al* 1999) and statistical significance determined by Wald X² test (*P* < 0.05).

Results

Patient demographics and disposition

The ITT population comprised 254 patients (n=170 lenalidomide; n=84 IC) enrolled between April 2009 and March 2013. Three patients randomized to lenalidomide and 1 patient randomized to IC did not receive study treatment. Overall, patients had a median age of 68.5 years, 68% were 65 years or older, and 73% were male. Patients had received a median of 2 (range, 1–5) prior treatment regimens, including 19% with prior SCT. As previously reported, the treatment arms were balanced in baseline characteristics except for high-risk MIPI score, high tumor burden, bulky disease, and high lactate dehydrogenase (LDH) concentration which were more prevalent among patients randomized to lenalidomide versus IC (Trneny, *et al* 2016). Also, compared with the IC treatment arm, more patients in the lenalidomide arm had received a higher number of previous anti-lymphoma treatments and had been refractory to their last previous therapy.

As of the data cutoff of March 7, 2016, 163 of 250 patients (65%) overall who received treatment had died. While on study, only 17 (7%) patients had died during or within 30 days of their study treatment (lenalidomide or IC). Causes of death were similar in both treatment groups, primarily due to malignant lymphoma (46% lenalidomide vs. 45% IC), other/unknown causes (17% lenalidomide vs 20% IC), and toxicity (1 lenalidomide patient vs 2 IC patients). 16 patients were ongoing on initial lenalidomide treatment and 1 patient in the IC (rituximab) group. Additionally, 5 of 40

patients who crossed over from IC to lenalidomide were still receiving lenalidomide treatment.

Progression-free survival

The median follow-up for all surviving patients was 41.3 months, which was an additional 20 months from the initial assessment and published report (Trneny, *et al* 2016). Lenalidomide continued to show longer median PFS than IC (8.6 versus 5.4 months, respectively; P = 0.006; Fig 1A). An improvement in PFS with lenalidomide over IC was evident across most baseline subgroups, particularly those with higher numbers of patients, and including patients who were \geq 65 years of age (P = 0.001; Fig 1B); had advanced stage III/IV disease at diagnosis (P = 0.014; Fig 1C), high LDH (P = 0.016; Fig 1D]), high tumor burden (P = 0.007; Fig 1E), bulky disease (P = 0.068; Fig 1F); and whose disease was refractory to their last therapy (P < 0.001; Fig 1G). In support of higher PFS in these same categories, lenalidomide treatment showed higher ORR compared with IC at the earliest efficacy assessment (cycle 3) when treatment on all IC comparators was still ongoing (supplementary Figure S1).

Figure 2 lists the total number of patients per arm and subgroup depicted in the forest plots, along with their associated median PFS values and *P* value. Subgroup data were missing for some patients. As shown in Figure 2A, subgroups that had statistically significant improvements in PFS favoring lenalidomide over IC included patients with intermediate (*P* = 0.033) and high MIPI score at baseline (*P* = 0.037), age ≥65 years (*P* = 0.001), ECOG PS 0–1 (*P* = 0.025) or 2–4 (*P* = 0.019), normal (*P* = 0.049) or high LDH (*P* = 0.016), and <6.7x10⁹/L white blood cell (WBC) counts (*P* = 0.011). The analysis of

other patient and disease characteristics (Fig 2B) showed statistically significant improvements in PFS favoring lenalidomide in females (P = 0.035), stage III/IV disease at diagnosis (P = 0.014), irrespective of tumor burden (low P = 0.018; high P = 0.007), in patients without bulky disease (P = 0.004) or bone marrow involvement (P = 0.006), and in patients with both normal (P = 0.026) and moderate renal function (P = 0.019).

We also evaluated subgroups to examine the potential impact of prior therapy on PFS outcomes. As shown in Figure 2C, lenalidomide significantly improved PFS compared with IC in patients who were <3 years from MCL diagnosis (P = 0.002); had more prior systemic antilymphoma therapies (P = 0.002 for ≥ 2 ; P = 0.020 for ≥ 3); were refractory to their last therapy (P < 0.001); had >1 prior relapses (P = 0.007 for >1, P = 0.007 for ≥ 2 , and P = 0.006 for <3); regardless of time from last prior therapy (P = 0.042 for <6 months, and P = 0.033 for ≥ 6 months); received prior rituximab- (P = 0.014) or fludarabine-including therapy (P = 0.038); and had not received prior high-dose therapy (HDT; P = 0.003) or undergone prior SCT (P = 0.003). Despite the limitation of small patient numbers in some subgroups, these data suggest that lenalidomide may significantly improve PFS compared with IC treatment irrespective of ECOG status, high LDH, and tumor burden.

Univariate and multivariate analyses for progression-free survival

Further evaluation of subgroups by univariate Cox regression analysis showed that treatment group (lenalidomide favored over IC) was the main effect associated with significantly improved PFS (HR = 0.65; P = 0.005), which was also highly significant by multivariate analysis (HR = 0.42; P < 0.001) (Table I). Other subgroups with statistically

significant improvements in PFS (P<0.05) in the univariate analysis were low/intermediate MIPI score at diagnosis and baseline, normal LDH levels, <10x10⁹/L WBC counts, normal renal function, <3 prior systemic antilymphoma therapies, and ≥6 months since last prior therapy .

In the multivariate Cox regression analysis, normal LDH level was associated with highly significant improvement in PFS (P < 0.001) with lenalidomide treatment versus IC (Table I). Other factors retaining significance in the multivariate model included no bulky disease (P = 0.045), <3 prior antilymphoma treatments (P = 0.005), and ≥6 months since last prior therapy (P = 0.032).

Univariate and multivariate analyses for overall survival

Median overall survival was 27.8 months (95% CI, 22.6-35.3) for lenalidomide versus 21.2 months (95% CI, 16.0-31.7) for IC (HR = 0.86; 95% CI, 0.62-1.18; Mantel-Byar P = 0.34 [taking into account the effect of crossover]; Fig 3). We also performed univariate and multivariate analyses for OS as a way of identifying and/or confirming the role of potential independent factors on survival (Table II). For OS, although the comparison between treatment groups did not achieve statistical significance (lenalidomide versus IC), baseline factors that were statistically significant in the univariate analysis (P < 0.05) and led to improved OS were ECOG PS 0–1, normal LDH, low/intermediate MIPI score at diagnosis or baseline, <3 prior antilymphoma therapies, relapsed status to last therapy, ≥6 months from last prior therapy, low tumor burden, and no bulky disease. Significant in the multivariate analysis of OS was female sex (HR = 0.54; 95% CI, 0.33–0.89; P = 0.015).

Discussion

The primary analysis of MCL-002 demonstrated that lenalidomide significantly improved PFS compared with single-agent IC therapy in patients with relapsed/refractory MCL, resulting in a significant risk reduction in PD or death (Trneny, *et al* 2016). The current exploratory subgroup and multivariate analyses extend these findings by uncovering an improved clinical benefit with lenalidomide compared with IC in patients with a wide range of demographic and baseline clinical characteristics. Moreover, the PFS benefit of lenalidomide over IC does not appear to be affected by the level of disease activity (measured by increased LDH), more advanced stage MCL, or tumor burden. Additionally, lenalidomide treatment showed an early significant improvement in ORR compared with IC at cycle 3, supporting later differences in PFS. The PFS advantage of lenalidomide in patients with poor prognosis (high MIPI score at baseline) and the elderly, who represent the majority of patients with relapsed/refractory MCL, is of particular clinical relevance.

Previous subgroup analyses for lenalidomide were conducted in the MCL-001 study, which evaluated lenalidomide in 134 MCL patients who had experienced relapse after or whose disease was refractory to bortezomib (Goy, *et al* 2013). Because MCL-001 did not have a control arm, the subgroup analyses evaluated the impact of baseline factors on ORR and duration of response (primary study endpoints). Lenalidomide treatment effects were consistent across subgroups in MCL-001, with high LDH

identified as the only significant factor for lower activity in the univariate and multivariate analyses (Goy, et al 2013).

The present MCL-002 subgroup analyses confirm these findings in a randomized, controlled setting. High LDH is a known adverse prognostic factor in MCL (Hoster, *et al* 2014) and was identified in the current multivariate analysis as an independent factor for worse PFS. Notably, lenalidomide showed a significant improvement in PFS compared with IC in patients with high LDH. Similarly, lenalidomide exhibited a statistically significant PFS benefit in other high-risk subgroups, including patients with high baseline MIPI score, older age (≥65 years), stage III/IV disease, high tumor burden, and refractoriness to last prior therapy. Lenalidomide treatment was also associated with a non-statistically significant trends toward longer median PFS in several other higher-risk subgroups, including those with bulky disease (≥7 cm) and in those who received prior HDT and/or SCT.

The MCL-002 study was prospectively conducted in a large number of patients across multiple centers to examine PFS and was the first randomized, controlled trial of lenalidomide in patients with relapsed/refractory MCL. The present subgroup analyses were prespecified for analysis per investigator assessment. One limitation of MCL-002 is that temsirolimus, ibrutinib, and other newer agents that are now available for use in MCL were not considered standard treatment when recruitment in the MCL-002 study began. Thus, although lenalidomide was favored over IC in the univariate and multivariate analyses, the results may have been influenced by the treatment options available in the IC arm.

Several studies of temsirolimus and ibrutinib have reported similar efficacy by PFS or ORR across subgroups. Temsirolimus versus single-agent IC (primarily, gemcitabine and fludarabine) showed consistently longer PFS across sex, performance status, disease stage at diagnosis, bone marrow involvement, and number of prior regimens in exploratory subgroup analyses of a phase III trial (Hess, *et al* 2009) and in a recent retrospective analysis, across MIPI risk categories (Hess, *et al* 2015). Subgroup analyses of a single-arm phase II trial of ibrutinib in 111 patients with relapsed/refractory MCL found similar ORRs, irrespective of multiple baseline factors, including tumor bulk (\geq 5 and \geq 10 cm cutoffs), \geq 2 prior treatment regimens, and refractory disease (less than partial response to last prior therapy) (Wang, *et al* 2015). More recently in an open-label phase III study, ibrutinib over temsirolimus was shown to have improvements in PFS overall and when broken down by subgroups (Dreyling, *et al* 2016).

Another limitation of our analysis is that, despite the relatively large size of the study population, MCL-002 was not powered to detect statistical differences in PFS between subgroups, and the subgroup analyses were prespecified to be exploratory in nature. Therefore, observed differences between lenalidomide and IC should not be overinterpreted. Similarly, the lack of statistical significance between lenalidomide and IC in some subgroups should be interpreted with caution. What makes lenalidomide unique and different from other treatments is the longevity of its responses.

It is interesting to consider the factors (i.e., normal LDH, no bulky disease, <3 prior antilymphoma therapies, ≥6 months since last prior therapy) identified by our multivariate analysis as having a significant positive impact on PFS, in addition to

lenalidomide treatment. MIPI has been validated and refined for previously untreated patients who received chemotherapy ± rituximab (Hoster, *et al* 2008, Hoster, *et al* 2014). In our analysis, some but not all of the MIPI-based factors were identified here as having a significant impact on PFS. How these factors might help risk-stratify patients in the relapsed/refractory setting and with newer, more targeted agents remains to be defined in future larger analyses.

In conclusion, the prespecified subgroup and multivariate analyses for study MCL-002 indicate that lenalidomide improves PFS compared with single-agent IC therapy in patients with relapsed/refractory MCL, independent of most patient demographic and clinical characteristics, and prior treatment history.

Acknowledgements

This study was funded by Celgene Corporation. Editorial support for this manuscript was provided by Julie Kern, PhD, CMPP with Bio Connections LLC, which was funded by Celgene Corporation.

Author contributions

All authors contributed equally to this work.

Disclosures

LA: received advisory board support from Bayer, Gilead, Roche, and Sandoz; consultancy for Celgene and Roche; research support from Gilead.

JW: reports consultancy and lecture honoraria from Roche, Mundipharma, Celgene, Takeda, Teva, Gilead, and Sanofi; consultancy agreements with Janssen-Cilag, Teva, Boehringer Ingelheim, Karyopharm, Ariad, and Servier; and grant support from

GSK/Novartis.

DB and JM: report grants and other remuneration from Celgene.

JR: reports advisory board support for Novartis and Cell Medica; advisory board, speaker's bureau, and research support from Takeda; and grant support from Celgene Ltd to Christie NHS Foundation Trust. JR reports holding of AstraZeneca and GlaxoSmithKline shares by his spouse.

WJ: reports research funding from Celgene, Gilead, Jansen, Novartis, Pfiser, Pharmacyclics, Roche, Sandoz, Spectrum, and Takeda and consulting/advisory boards for Mundipharma, Novartis, Spectrum, Takeda, and Teva.

FM: reports consultancy for Celgene, Genentech/Roche, Servier, and Gilead and honoraria for lectures for Celgene.

SR: reports research funding from Celgene, Janssen, and Roche; advisory boards for AstraZeneca, Celgene, Janssen, Kite, and Roche; and speaker fees from Janssen.

TB, MP, MLCB: are employees of Celgene International SARL and Celgene Corporation.

JC: reports contract fees from Celgene International SARL to the Institute, advisory board form MSD, and speakers' bureau from Roche Pharma.

MT: reports grant support and other remuneration from Celgene and Roche and other remuneration from Janssen and Amgen.

TL and JA: declare no competing interests.

EC: reports honoraria for lectures from Celgene and Takeda, travel expenses and accommodation from Celgene, research grants, educational activity, and expert testimony from Gilead, and advisory board from Bayer and Gilead.

SAP: reports advisory board and speaker's bureau for Takeda.

References

- Avivi, I. & Goy, A. (2015) Refining the mantle cell lymphoma paradigm: impact of novel therapies on current practice. *Clinical Cancer Research*, **21**, 3853-3861.
- Cheson, B.D., Horning, S.J., Coiffier, B., Shipp, M.A., Fisher, R.I., Connors, J.M., Lister, T.A., Vose, J., Grillo-Lopez, A., Hagenbeek, A., Cabanillas, F., Klippensten, D., Hiddemann, W., Castellino, R., Harris, N.L., Armitage, J.O., Carter, W., Hoppe, R. & Canellos, G.P. (1999) Report of an international workshop to standardize response criteria for non-Hodgkin's lymphomas. NCI Sponsored International Working Group. *Journal of Clinical Oncology*, **17**, 1244-1253.
- Dreyling, M., Geisler, C., Hermine, O., Kluin-Nelemans, H.C., Le Gouill, S., Rule, S., Shpilberg, O., Walewski, J., Ladetto, M. & Group, E.G.W. (2014) Newly diagnosed and relapsed mantle cell lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. *Annals of Oncology*, 25 Suppl 3, iii83-92.
- Dreyling, M., Jurczak, W., Jerkeman, M., Silva, R.S., Rusconi, C., Trneny, M., Offner, F., Caballero, D., Joao, C., Witzens-Harig, M., Hess, G., Bence-Bruckler, I., Cho, S.G., Bothos, J., Goldberg, J.D., Enny, C., Traina, S., Balasubramanian, S., Bandyopadhyay, N., Sun, S., Vermeulen, J., Rizo, A. & Rule, S. (2016) Ibrutinib versus temsirolimus in patients with relapsed or refractory mantle-cell lymphoma: an international, randomised, open-label, phase 3 study. *Lancet*, **387**, 770-778.
- Goy, A., Kalayoglu Besisik, S., Drach, J., Ramchandren, R., Robertson, M.J., Avivi, I., Rowe, J.M., Herbrecht, R., Van Hoof, A., Zhang, L., Cicero, S., Fu, T. & Witzig, T. (2015) Longer-term follow-up and outcome by tumour cell proliferation rate (Ki-67) in patients with relapsed/refractory mantle cell lymphoma treated with lenalidomide on MCL-001(EMERGE) pivotal trial. *British Journal of Haematology*, **170**, 496-503.
- Goy, A., Sinha, R., Williams, M.E., Kalayoglu Besisik, S., Drach, J., Ramchandren, R., Zhang, L., Cicero, S., Fu, T. & Witzig, T.E. (2013) Single-agent lenalidomide in patients with mantle-cell lymphoma who relapsed or progressed after or were refractory to bortezomib: phase II MCL-001 (EMERGE) study. *Journal of Clinical Oncology*, **31**, 3688-3695.
- Habermann, T.M., Lossos, I.S., Justice, G., Vose, J.M., Wiernik, P.H., McBride, K., Wride, K., Ervin-Haynes, A., Takeshita, K., Pietronigro, D., Zeldis, J.B. & Tuscano, J.M. (2009) Lenalidomide oral monotherapy produces a high response rate in patients with relapsed or refractory mantle cell lymphoma. *British Journal* of Haematology, 145, 344-349.
- Hess, G., Coiffier, B., Crump, M., Gisselbrecht, C., Offner, F., Romaguera, J., Kang, L.
 & Moran, P.J. (2015) Effect of prognostic classification on temsirolimus efficacy and safety in patients with relapsed or refractory mantle cell lymphoma: a retrospective analysis. *Experimental Hematology & Oncology*, 4, 11.
- Hess, G., Herbrecht, R., Romaguera, J., Verhoef, G., Crump, M., Gisselbrecht, C., Laurell, A., Offner, F., Strahs, A., Berkenblit, A., Hanushevsky, O., Clancy, J.,

Hewes, B., Moore, L. & Coiffier, B. (2009) Phase III study to evaluate temsirolimus compared with investigator's choice therapy for the treatment of relapsed or refractory mantle cell lymphoma. *Journal of Clinical Oncology*, **27**, 3822-3829.

- Hoster, E., Dreyling, M., Klapper, W., Gisselbrecht, C., van Hoof, A., Kluin-Nelemans, H.C., Pfreundschuh, M., Reiser, M., Metzner, B., Einsele, H., Peter, N., Jung, W., Wormann, B., Ludwig, W.D., Duhrsen, U., Eimermacher, H., Wandt, H., Hasford, J., Hiddemann, W. & Unterhalt, M. (2008) A new prognostic index (MIPI) for patients with advanced-stage mantle cell lymphoma. *Blood*, **111**, 558-565.
- Hoster, E., Klapper, W., Hermine, O., Kluin-Nelemans, H.C., Walewski, J., van Hoof, A., Trneny, M., Geisler, C.H., Di Raimondo, F., Szymczyk, M., Stilgenbauer, S., Thieblemont, C., Hallek, M., Forstpointner, R., Pott, C., Ribrag, V., Doorduijn, J., Hiddemann, W., Dreyling, M.H. & Unterhalt, M. (2014) Confirmation of the mantle-cell lymphoma international prognostic index in randomized trials of the European mantle-cell lymphoma network. *Journal of Clinical Oncology*, **32**, 1338-1346.
- Trneny, M., Lamy, T., Walewski, J., Belada, D., Mayer, J., Radford, J., Jurczak, W., Morschhauser, F., Alexeeva, J., Rule, S., Afanasyev, B., Kaplanov, K., Thyss, A., Kuzmin, A., Voloshin, S., Kuliczkowski, K., Giza, A., Milpied, N., Stelitano, C., Marks, R., Trumper, L., Biyukov, T., Patturajan, M., Bravo, M.L., Arcaini, L., investigators, S.t. & in collaboration with the European Mantle Cell Lymphoma, N. (2016) Lenalidomide versus investigator's choice in relapsed or refractory mantle cell lymphoma (MCL-002; SPRINT): a phase 2, randomised, multicentre trial. *The Lancet. Oncology*, **17**, 319-331.
- Wang, M.L., Blum, K.A., Martin, P., Goy, A., Auer, R., Kahl, B.S., Jurczak, W., Advani, R.H., Romaguera, J.E., Williams, M.E., Barrientos, J.C., Chmielowska, E., Radford, J., Stilgenbauer, S., Dreyling, M., Jedrzejczak, W.W., Johnson, P., Spurgeon, S.E., Zhang, L., Baher, L., Cheng, M., Lee, D., Beaupre, D.M. & Rule, S. (2015) Long-term follow-up of MCL patients treated with single-agent ibrutinib: updated safety and efficacy results. *Blood*, **126**, 739-745.
- Zinzani, P.L., Vose, J.M., Czuczman, M.S., Reeder, C.B., Haioun, C., Polikoff, J., Tilly, H., Zhang, L., Prandi, K., Li, J. & Witzig, T.E. (2013) Long-term follow-up of lenalidomide in relapsed/refractory mantle cell lymphoma: subset analysis of the NHL-003 study. *Annals of Oncology*, **24**, 2892-2897.

Tables

Table I. Univariate and multivariate analyses by Cox Regression on PFS by investigator assessment^a

	Univariate a	nalysis	Multivariate analysis		
Baseline variable	HR (95% CI)	P value	HR (95% CI)	P value	
Treatment (lenalidomide versus IC)	0.65 (0.48–0.87)	0.005	0.42 (0.28–0.62)	<0.001	
MIPI-based characteristics					
MIPI score at diagnosis (high versus	1.57 (1.12–2.20)	0.009	—	—	
low/intermediate) ^b					
MIPI score at baseline (high versus	2.11 (1.57–2.83)	<0.001	1.51 (1.00–2.27)	0.052	
low/intermediate) ^b					
Age, years (≥65 versus <65)	1.02 (0.75–1.38)	0.919	—	—	
ECOG PS (2 versus 0-1)	1.46 (0.99–2.16)	0.053	—		
LDH (high versus low/normal) ^c	2.00 (1.49–2.67)	<0.001	2.02 (1.35–3.01)	<0.001	
WBC (≥10 x 10 ⁹ /L versus <10 x 10 ⁹ /L)	1.55 (1.08–2.21)	0.017	—		
Other patient characteristics					
Sex (female versus male)	0.86 (0.62–1.18)	0.348	—	<u> </u>	
MCL stage at diagnosis (III/IV versus I/II)	0.81 (0.46–1.42)	0.461	—		
Tumor burden (low versus high) ^d	0.81 (0.60–1.08)	0.155	—	—	
Bulky disease (yes versus no) ^e	1.40 (0.98–2.01)	0.063	1.57 (1.01–2.43)	0.045	
Bone marrow assessment (negative	0.72 (0.44–1.20)	0.206	—	—	
versus indeterminate/positive) ^f					
Renal function (normal versus	0.60 (0.43–0.84)	0.003	—	_	
moderate/severe insufficiency) ^g					
Prior treatment history					

	Univariate a	nalysis	Multivariate analysis		
Baseline variable	HR (95% CI)	P value	HR (95% CI)	P value	
Time from MCL diagnosis to first dose (≥3	0.85 (0.64–1.14)	0.280	—	—	
versus <3 years)					
Number of prior systemic antilymphoma therapies: ≥3 versus <3	1.51 (1.11–2.06)	0.009	1.75 (1.19–2.58)	0.005	
Disease status to last prior therapy	0.77 (0.58–1.03)	0.075	—	—	
(relapsed ^h versus refractory)					
Time from last prior therapy to first dose	0.74 (0.55–0.98)	0.034	0.68 (0.47–0.97)	0.032	
(≥6 versus <6 months)					
Time since last rituximab to first dose	0.79 (0.59–1.07)	0.127	—	—	
(≥230 versus <230 days)					
Prior HDT (yes versus no) ⁱ	0.98 (0.68–1.42)	0.930	_	—	
Prior SCT (yes versus no)	0.96 (0.66–1.39)	0.837	_	_	

CR, complete response; CrCl, creatinine clearance; ECOG, Eastern Cooperative Oncology Group; HDT, high-dose therapy; LDH, lacatate dehydrogenase; MCL, mantle cell lymphoma; MIPI, MCL International Prognostic Index; PFS, progression-free survival; PS, performance status; SCT, stem cell transplantation.

^aVariables with *P* value <0.20 in the univariate analysis were used to select for the multivariate. Final variables were selected using a stepwise selection method with entry level = 0.20 and stay level = 0.15. Multivariate survival analysis using Cox's regression model was estimated using 162 patients.

^bMIPI score = 0.03535 * age + 0.6978 * (if ECOG PS >1) +1.367 * log10 (LDH/ULN) + 0.9393 * log10 (WBC per 10⁻⁶/L).

^cHigh LDH was >3.4 µkat/L for patients aged ≤60 years and >3.5 µkat/L for those aged >60 years; low LDH was <1.8 µkat/L; normal was defined per local laboratory criteria.

^dHigh tumor burden was defined by at least one lesion ≥5 cm in diameter or three lesions ≥3 cm in diameter by central radiology review.

^eBulky disease was defined by at least one lesion \geq 7 cm in the longest diameter by central radiology review.

^fFor estimation of bone marrow involvement by local pathologist, negative was defined as having no aggregates or only a few well-circumscribed lymphoid aggregates, indeterminate bone marrow was defined as having an increased number/size of lymphoid aggregates without overt malignancy, and positive was defined as an unequivocal malignancy.

^gNormal renal function defined as CrCl of ≥60 mL/min; moderate insufficiency had CrCl ≥30 to <60 mL/min but not requiring dialysis; severe insufficiency had CrCl <30 mL/min. 2 patients had severe insufficiency in this study.

^hRelapse included patients with best response to last treatment of CR, unconfirmed CR, or partial response. ⁱHDT defined as SCT, hyper-CVAD, or R-hyper-CVAD.

	Univariate a	inalysis	Multivariate analysis		
Baseline variable	HR (95% CI)	P value	HR (95% CI)	P value	
Treatment (lenalidomide versus IC)	0.86 (0.62–1.18)	0.35	—		
MIPI-based characteristics					
MIPI score at diagnosis (high versus	1.80 (1.27–2.56)	0.001	—	—	
low/intermediate) ^b					
MIPI score at baseline (high versus	2.00 (1.47–2.74)	< 0.001	1.49 (0.96–2.32)	0.08	
low/intermediate) ^b					
Age, years (≥65 versus <65)	1.14 (0.82–1.60)	0.44	<u> </u>	—	
ECOG PS (2 versus 0-1)	1.62 (1.07–2.43)	0.02	—	_	
LDH (high versus low/normal) ^c	1.96 (1.44–2.68)	< 0.001	1.50 (0.97–2.30)	0.07	
WBC (≥10 x 10 ⁹ /L versus <10 x 10 ⁹ /L)	1.42 (0.96–2.08)	0.08	—	—	
Other patient characteristics					
Sex (female versus male)	0.77 (0.54–1.11)	0.16	0.54 (0.33–0.89)	0.02	
MCL stage at diagnosis (III/IV versus I/II)	0.96 (0.50–1.82)	0.89	—	—	
Tumor burden (low versus high) ^d	0.68 (0.50–0.94)	0.02	—	—	
Bulky disease (yes versus no) ^e	1.55 (1.06–2.25)	0.02	1.54 (0.97–2.44)	0.07	
Bone marrow assessment (negative	0.71 (0.42–1.22)	0.22	—	_	
versus indeterminate/positive) ^f					
Renal function (normal versus	0.71 (0.50–1.01)	0.06	—	—	
moderate/severe insufficiency) ^g					
Prior treatment history					
Time from MCL diagnosis to first dose (≥3	0.82 (0.60–1.12)	0.22	_	_	
versus <3 years)					

Table II. Univariate and multivariate analyses by Cox Regression on overall survival by investigator assessment^a

	Univariate a	nalysis	Multivariate analysis		
Baseline variable	HR (95% CI)	P value	HR (95% CI)	P value	
Number of prior systemic antilymphoma therapies: ≥3 versus <3	1.59 (1.14–2.22)	0.006	1.49 (0.98–2.25)	0.06	
Disease status to last prior therapy	0.70 (0.51–0.96)	0.03	—	—	
(relapsed ^h versus refractory)					
Time from last prior therapy to first dose	0.60 (0.44–0.82)	0.001	0.69 (0.47–1.04)	0.08	
(≥6 versus <6 months)					
Time since last rituximab to first dose	0.74 (0.53–1.02)	0.07	—	—	
(≥230 versus <230 days)					
Prior HDT (yes versus no) ⁱ	1.13 (0.77–1.68)	0.53	—		
Prior SCT (yes versus no)	1.09 (0.74–1.62)	0.66		_	

CR, complete response; CrCl, creatinine clearance; ECOG, Eastern Cooperative Oncology Group; HDT, high-dose therapy; LDH, lacatate dehydrogenase; MCL, mantle cell lymphoma; MIPI, MCL International Prognostic Index; PFS, progression-free survival; PS, performance status; SCT, stem cell transplantation.

^aVariables with *P* value <0.20 in the univariate analysis were used to select for the multivariate. Final variables were selected using a stepwise selection method with entry level = 0.20 and stay level = 0.15. Multivariate survival analysis using Cox's regression model was estimated using 162 patients.

^bMIPI score = 0.03535 * age + 0.6978 * (if ECOG PS >1) +1.367 * log10 (LDH/ULN) + 0.9393 * log10 (WBC per 10⁻⁶/L).

^cHigh LDH was >3.4 µkat/L for patients aged ≤60 years and >3.5 µkat/L for those aged >60 years; low LDH was <1.8 µkat/L; normal was defined per local laboratory criteria.

^dHigh tumor burden was defined by at least one lesion \geq 5 cm in diameter or three lesions \geq 3 cm in diameter by central radiology review.

^eBulky disease was defined by at least one lesion ≥7 cm in the longest diameter by central radiology review.

^fFor estimation of bone marrow involvement by local pathologist, negative was defined as having no aggregates or only a few well-circumscribed lymphoid aggregates, indeterminate bone marrow was defined as having an increased number/size of lymphoid aggregates without overt malignancy, and positive was defined as an unequivocal malignancy.

^gNormal renal function defined as CrCl of ≥60 mL/min; moderate insufficiency had CrCl ≥30 to <60 mL/min but not requiring dialysis; severe insufficiency had CrCl <30 mL/min. 2 patients had severe insufficiency in this study.

^hRelapse included patients with best response to last treatment of CR, unconfirmed CR, or partial response.

ⁱHDT defined as SCT, hyper-CVAD, or R-hyper-CVAD.

Figure Legends

Figure 1. Kaplan-Meier curves of PFS in the lenalidomide versus IC treatment arms for all patients (A) and for patient subgroups with age \geq 65 years (B), advanced MCL stage III/IV at diagnosis (C), high LDH at baseline (D), high tumor burden at baseline (E), bulky disease at baseline (F), and disease refractory to last treatment (G). IC, investigator's choice; LDH, lactate dehydrogenase; MCL, mantle cell lymphoma; PFS, progression-free survival.

Figure 2. Forest plots of treatment effects on median PFS by subgroups according to MIPI-based characteristics (A), other patient characteristics (B), and prior treatment history (C). Improved PFS to the left of the vertical line (i.e., at 1) favors lenalidomide and to the right of the line favors IC. Statistically significant ($P \le 0.05$) values and the specified factors are shown in bold.

ECOG, Eastern Cooperative Oncology Group; HR, hazard ratio; IC, investigator's choice; Intermed., intermediate; LDH, lactate dehydrogenase; MCL, mantle cell lymphoma; MIPI, MCL International Prognostic Index; PFS, progression-free survival; PS, performance status; SCT, stem cell transplantation; WBC, white blood cell.

Figure 3. Kaplan-Meier curves of overall survival in the lenalidomide versus IC treatment arms for all patients. OS, overall survival.

Figure 1.

A. All patients by treatment arm

B. ≥65 years of age

D. High LDH at baseline

E. High tumor burden at baseline

F. Bulky disease at baseline

Figure 2. A. MIPI-based characteristics

		PES	Patients, n/N		Media mor	n PFS, nths		
	Subgroup	HR (95% CI)	Len	IC	Len	IC	Log rank P	
	Low	8 7	41/61	27/35	7.5	5.7	0.035	
MIPI score at	Intermed.		37/51	17/22	8.4	6	0.255	
alagnoolo	High		36/40	12/14	5.7	2.1	0.549	
	Low		28/42	15/21	16.4	5.7	0.159	
MIPI score at	Intermed.	-	46/66	27/37	12.1	6.4	0.033	
Dasenne	High	-	52/60	23/25	3.7	2.1	0.037	
Age	<65 years	-	41/55	21/27	5.7	6.8	0.637	
	≥65 years	-	86/115	45/57	10.7	4.3	0.001	
	0-1	•	107/142	55/73	8.6	5.9	0.025	
ECOG PS	2	-	20/27	11/11	9.0	1.9	0.019	
	Low		0/2	2/2	NA	4.6	0.157	
LDH	Normal	-	67/94	35/51	12.2	7.8	0.049	
	High	-	59/73	28/30	3.8	2.0	0.016	
	<6.7	-	55/79	37/46	8.1	4.4	0.011	
wвс	6.7-<10	-	42/56	20/27	11.5	7.4	0.085	
(x10 ⁹ /L)	10-<15	-	15/19	5/7	8.4	8.4	0.804	
	≥15		14/15	4/4	2.9	3.9	0.731	
		0 1 2 3 4	5					

HR (95% CI)

B. Other baseline patient characteristics

			DEC	Pation	Media	1		
	Subgroup	1 HE	PF5 8 (95% Cl)	Len		Len	IC	Log rank
-	Male	•		95/123	49/63	7.5	5.7	0.055
Sex	Female	-		32/47	17/21	11.2	3.6	0.035
MCL stage	1/11			10/13	3/3	6.4	2.0	0.098
at diagnosi	s III/IV	-		114/153	61/79	8.6	6.0	0.014
Tumor	High	•		62/81	23/28	7.0	3.5	0.007
burden	Low	-		57/78	40/50	13.8	6.8	0.018
Bulky	Yes	-		28/37	11/13	5.5	2.2	0.068
disease	No	-		91/122	52/65	11.2	5.9	0.004
	Negative	-		22/27	11/11	11.5	3.5	0.006
Bone	Indeterm.	—		- 4/4	3/3	2.8	4.4	0.123
marrow	Positive	-+	_	16/21	11/13	5.8	7.6	0.943
Renal	Normal	-		98/134	47/63	8.6	5.4	0.026
function	Moderate	-		29/34	19/21	8.6	5.0	0.019

0 1 2 3 4 5 HR (95% CI)

C. Prior treatment history

			PF	s		Patient	Median PFS, Patients, n/N months				
	Subgroup		HR (95	5% CI)	Len	IC	Len	IC	Log rank P	
Time from	<3 years	- -1				73/91	38/44	8.6	2.2	0.002	
MCL diagnosis	≥3 years	-	-			54/76	28/39	8.9	7.8	0.331	
No. of prior	<2	-				38/55	28/37	14.1	7.7	0.117	
therapies	≥2	-				89/115	38/47	5.6	3.6	0.002	
No. of prior	<3	-				89/125	46/60	10.7	6.4	0.036	
therapies	≥3	-				38/45	20/24	5.1	3.3	0.020	
	1	-				38/55	28/37	14.1	7.7	0.117	
No. of prior	2	-				51/70	18/23	7.0	5.7	0.047	
therapies	3	-				29/36	17/20	5.6	2.1	0.003	
	≥4	-	-			9/9	3/4	1.9	4.4	0.438	
Status to last	Refractory					57/70	21/25	6.1	1.9	<0.001	
therapy	Relapsed	-				70/100	45/59	10.7	7.8	0.120	
	0	╼┼	_			11/14	5/8	8.6	6.9	0.220	
Number of relapses	1					72/98	31/39	9.0	6.0	0.252	
	>1	-				44/58	30/37	5.6	4.3	0.007	
Number of	<2	-				83/112	36/47	9.0	6.4	0.138	
relapses	≥2	-				44/58	30/37	5.6	4.3	0.007	
Number of	<3	-				118/158	57/74	8.9	5.7	0.006	
relapses	≥3	_	_	_		9/12	9/10	3.9	5.0	0.758	
Time from	<6 months	-				60/71	29/36	5.5	5.0	0.042	
therapy	≥6 months	-				66/95	37/47	11.3	5.9	0.033	
Time since	<230 days	-				55/64	27/33	8.1	4.4	0.081	
rituximab	≥230 days	-				63/89	32/42	9.0	6.0	0.122	
Type of	Rituximab	-				119/156	60/77	8.6	5.9	0.014	
included	Cytarabine	-	-			49/62	28/32	5.1	6.0	0.679	
prior therapy	Fludarabine	-				44/53	12/16	4.9	2.0	0.038	
Prior HDT	Yes		_			20/31	15/18	5.6	4.4	0.492	
	No	•				107/139	51/66	8.6	5.7	0.003	
Prior SCT	Yes	-=	_			19/30	15/18	5.7	4.4	0.427	
	No	•				108/140	51/66	8.6	5.7	0.003	
						_					
	() 1	2	3	4	5					

HR (95% CI)

Figure 3. Kaplan-Meier curves of overall survival in the lenalidomide versus IC treatment arms for all patients. OS, overall survival.

Supplemental Information

Supplemental Table I. Prespecified baseline subgroups.

Baseline variable	Subgroups
MIPI-based characteristics	
MIPI score at diagnosis ^a	High versus low versus intermediate
MIPI score at baseline ^a	High versus low versus intermediate
Age	<65 versus ≥65 years
ECOG PS	2 versus 0-1
LDH ^b	Low/normal versus high
WBC count (x10 ⁹ /L)	<6.7 versus >6.7-<10 versus >10-<15 versus ≥15
Other patient characteristics	
Sex	Male versus female
MCL stage at diagnosis	I/II versus III/IV
Tumor burden ^c	Low versus high
Bulky disease ^d	Yes versus no
Bone marrow assessment ^e	Negative versus indeterminate/positive
Renal function ^f	Normal versus moderate/severe insufficiency
Prior treatment history	
Time from MCL diagnosis to first dose	<3 versus ≥3 years
Number of prior systemic	<2 versus ≥2
antilymphoma therapies	<3 versus ≥3
	1, 2, 3, ≥4
Disease status to last therapy	Relapsed ^g (≥PR) versus refractory
	0 versus 1 versus >1
Number of relapses	<2 versus ≥2
	<3 versus ≥3
Time from last prior therapy to first dose	<6 (refractory) versus ≥6 months
Time since last rituximab to first dose	<230 versus ≥230 days
Type of included prior therapy	Rituximab, cytarabine, or fludarabine
Prior HDT ^h	Yes versus no
Prior SCT	Yes versus no

CR, complete response; CrCl, creatinine clearance; ECOG, Eastern Cooperative Oncology Group; HDT, high-dose therapy; LDH, lacatate dehydrogenase; MCL, mantle cell lymphoma; MIPI, MCL International Prognostic Index; PR, partial response; PS, performance status; SCT, stem cell transplantation. ^aMCL International Prognostic Index (MIPI) score = 0.03535 * age + 0.6978 * (if Eastern Cooperative Oncology Group performance status [ECOG PS] >1) * log10 (lactate dehydrogenase [LDH]/upper limit of normal) + 0.9393 * log10 (white blood cell [WBC] per 10⁻⁶/L).

^bHigh LDH was >3.4 µkat/L for patients aged ≤60 years and >3.5 µkat/L for those aged >60 years; low LDH was <1.8 µkat/L; normal was defined per local laboratory criteria.

^cHigh tumor burden was defined by at least one lesion ≥5 cm in diameter or three lesions ≥3 cm in diameter by central radiology review.

^dBulky disease was defined by at least one lesion ≥7 cm in the longest diameter by central radiology review.

^eFor estimation of bone marrow involvement by local pathologist, negative was defined as having no aggregates or only a few well-circumscribed lymphoid aggregates; indeterminate bone marrow was defined as having an increased number/size of lymphoid aggregates without overt malignancy; and positive was defined as an unequivocal malignancy.

^fNormal renal function was defined as CrCl \geq 60 mL/min; moderate insufficiency had CrCl \geq 30 to <60 mL/min not requiring dialysis; severe insufficiency had CrCl <30 mL/min. 2 patients had severe insufficiency in this study.

⁹Relapse included patients with best response to last treatment of CR, unconfirmed CR, or partial response

^hHDT was defined as SCT, hyper-CVAD or R-hyper-CVAD.

Supplemental Figure S1. Subgroup analysis of ORR at cycle 3 in the intent-to-treat population for lenalidomide versus IC-treated patients (investigator's assessment; March 7, 2016, data cut-off). Statistical significance for *P* values of ORR comparisons was determined by Wald X^2 test (*P*<0.05). IC, investigator's choice; LDH, lactate dehydrogenase; MCL, mantle cell lymphoma; ORR, overall response rate.

Detient characteristics of	Lenali	domide		С	
baseline	n/N	ORR, %	n/N	ORR, %	P value
All patients	39/170	23	6/84	7	0.002
Age ≥65 years	27/115	24	2/57	4	0.003
MCL stage III/IV at diagnosis	34/153	22	6/79	8	0.006
High LDH	11/73	15	0/30	0	N/A
High tumor burden	20/81	25	1/28	4	0.034
Bulky disease	8/37	22	1/13	8	0.295
Refractory status	17/70	24	1/25	4	0.142