575 research outputs found

    CFD ANALYSIS OF A SWIMMER'S ARM AND HAND, ACCELERATION AND DECELERATION

    Get PDF
    The numerical technique of computational fluid dynamics (CFD) has been used to determine the effect of arm and hand acceleration and deceleration on the propulsive forces generated by swimmers. Relationships developed to predict hand and arm forces as a function of both velocity and acceleration show these forces can be significantly different from those calculated using the quasi-steady approach. Simple equations that provide a correction factor to forces calculated using the quasi-steady approach are provided. The analyses showed that drag and axial forces (along length of the arm) were affected more by unsteady flow than were the lift forces. Also, arm forces were affected more than were hand forces. And finally, maximum propulsion was obtained from the hand when it faced directly backwards towards the feet, even though the stroke itself may be moving diagonally

    Spontaneous arterial thrombosis in a patient with human immunodeficiency virus infection: Successful treatment with pharmacomechanical thrombectomy

    Get PDF
    AbstractPatients with human immunodeficiency virus (HIV) have various coagulation abnormalities as well as increased risk for development of clinical thrombosis and subsequent embolic events. We report acute lower leg ischemia caused by spontaneous atheroembolism with no identifiable source in a young patient with HIV infection. Treatment included percutaneous mechanical thrombectomy and thrombolysis, which reversed the arterial ischemia. Physicians should be aware of thromboembolic disease as a possible complication of HIV

    Continuous Homotopies for the Linear Complementarity Problem

    Get PDF
    There are various formulations of the linear complementarity problem as a Kakutani fixed point problem, a constrained optimization, or a nonlinear system of equations. These formulations have remained a curiosity since not many people seriously thought that a linear combinatorial problem should be converted to a nonlinear problem. Recent advances in homotopy theory and new mathematical software capabilities such as HOMPACK indicate that continuous nonlinear formulations of linear and combinatorial problems may not be far-fetched. Several different types of continuous homotopies for the linear complementarity problem are presented and analyzed here, with some numerical results. The homotopies with the best theoretical properties (global convergence and no singularities along the zero curve) turn out to also be the best in practice

    Static stretching of the hamstring muscle for injury prevention in football codes: a systematic review

    Get PDF
    Purpose: Hamstring injuries are common among football players. There is still disagreement regarding prevention. The aim of this review is to determine whether static stretching reduces hamstring injuries in football codes. Methods: A systematic literature search was conducted on the online databases PubMed, PEDro, Cochrane, Web of Science, Bisp and Clinical Trial register. Study results were presented descriptively and the quality of the studies assessed were based on Cochrane’s ‘risk of bias’ tool. Results: The review identified 35 studies, including four analysis studies. These studies show deficiencies in the quality of study designs. Conclusion: The study protocols are varied in terms of the length of intervention and follow-up. No RCT studies are available, however, RCT studies should be conducted in the near future

    Spectroscopy of luminous z>7 galaxy candidates and sources of contamination in z>7 galaxy searches

    Get PDF
    We present three bright z+ dropout candidates selected from deep Near-Infrared (NIR) imaging of the COSMOS 2 square degree field. All three objects match the 0.8-8um colors of other published z>7 candidates but are three magnitudes brighter, facilitating further study. Deep spectroscopy of two of the candidates covering 0.64-1.02um with Keck-DEIMOS and all three covering 0.94-1.10um and 1.52-1.80um with Keck-NIRSPEC detects weak spectral features tentatively identified as Ly-alpha at z=6.95 and z=7.69 in two of the objects. The third object is placed at z~1.6 based on a 24um and weak optical detection. A comparison with the spectral energy distributions of known z<7 galaxies, including objects with strong spectral lines, large extinction, and large systematic uncertainties in the photometry yields no objects with similar colors. However, the lambda>1um properties of all three objects can be matched to optically detected sources with photometric redshifts at z~1.8, so the non-detection in the i+ and z+ bands are the primary factors which favors a z>7 solution. If any of these objects are at z~7 the bright end of the luminosity function is significantly higher at z>7 than suggested by previous studies, but consistent within the statistical uncertainty and the dark matter halo distribution. If these objects are at low redshift, the Lyman-Break selection must be contaminated by a previously unknown population of low redshift objects with very strong breaks in their broad band spectral energy distributions and blue NIR colors. The implications of this result on luminosity function evolution at high redshift is discussed. We show that the primary limitation of z>7 galaxy searches with broad filters is the depth of the available optical data.Comment: 15 Pages, 15 figures, accepted to Ap

    The Simons Observatory: Cryogenic Half Wave Plate Rotation Mechanism for the Small Aperture Telescopes

    Full text link
    We present the requirements, design and evaluation of the cryogenic continuously rotating half-wave plate (CHWP) for the Simons Observatory (SO). SO is a cosmic microwave background (CMB) polarization experiment at Parque Astron\'{o}mico Atacama in northern Chile that covers a wide range of angular scales using both small (0.42 m) and large (6 m) aperture telescopes. In particular, the small aperture telescopes (SATs) focus on large angular scales for primordial B-mode polarization. To this end, the SATs employ a CHWP to modulate the polarization of the incident light at 8~Hz, suppressing atmospheric 1/f1/f noise and mitigating systematic uncertainties that would otherwise arise due to the differential response of detectors sensitive to orthogonal polarizations. The CHWP consists of a 505 mm diameter achromatic sapphire HWP and a cryogenic rotation mechanism, both of which are cooled down to ∌\sim50 K to reduce detector thermal loading. Under normal operation the HWP is suspended by a superconducting magnetic bearing and rotates with a constant 2 Hz frequency, controlled by an electromagnetic synchronous motor. The rotation angle is detected through an angular encoder with a noise level of 0.07ÎŒrads\mu\mathrm{rad}\sqrt{\mathrm{s}}. During a cooldown, the rotor is held in place by a grip-and-release mechanism that serves as both an alignment device and a thermal path. In this paper we provide an overview of the SO SAT CHWP: its requirements, hardware design, and laboratory performance.Comment: 19 pages, 21 figures, submitted to RS
    • 

    corecore