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Abstract. There are various formulations of the linear complementarity problem as a Kaku-
tani fixed point problem, a constrained optimization, or a nonlinear system of equations. These
formulations have remained a curiosity since not many people seriouslty thought that a linear combi-
natorial problem should be converted to a nomnlinear problem. Recent advances in homotopy theory
and new mathematical software capabilities such as HOMPACK indicate that continuous nonlinear
formulations of linear and combinatorial problems may not be far-fetched. Several different types of
contiruous homotopies for the linear complementarity problem are presented and analyzed here, with
some numerical results. The homotopies with the best theoretical properties (global convergence and
no singularities along the zere curve) turn out to also be the best in practice.
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1. Introduction. Given a real #» X n matrix M and a real n-vector g, the linear
complementarity problem (LCP), denoted by (g, M), is to find n-vectors w and z such
that

w—Mz=yqg

w20, 220, wz=0

The constraint w'z = 0 is called the complementarity condition since for any ¢, 1 =
i 2 m oz = 0if w; # 0, and vice versa. A solution where some z = w; = 0 1s
called degenerate. The linear complementarity problem arises in such diverse areas as
economic modeling [15, 16, 59|, bimatrix games [29, 32}, mathematical programming
[10, 19, 34], mechanics [17], lubrication {28], and numerical analysis [9].

There are numerous algorithms for solving special classes of linear complemen-
tarity problems. Those based on pivoting or simplex-type processes include Lemke’s
complementary pivot algorithm [29], Cottle and Dantzig’s principal pivot method [6],
Bard-type algorithms [4, 45, 60], and the n-cycle algorithm [62, 64]. There are also
linear iterative techmiques, similar to those for solving linear systems of equations,
such as SOR {2, 3, 8, 35, 50, 51, 61] and various related fixed point iteration schemes.
A very different algorithm is the simplicial homotopy algorithm of Merrill [37], ap-
plied to a Kakutani fixed point formulation (solution is a fixed point of a point-to-set
mapping) of the linear complementarity problem.
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A more recent development was the formulation of the linear complementarity
problem as a differentiable nonlinear system of equations [33], and the solution of
this system of equations by a globally convergent homotopy method [66]. This ap-
proach has remained a curiosity because few people took seriously the formulation of
a linear combinatorial problem (like the LCP} as a highly nonlinear problem. Re-
cent advances in homotopy theory and mathematical software for nonlinear systems
of equations [68]-]69], and new nomnlinear formulations of linear, discrete, and combi-
natorial problems ([33], [53], [54], [66], [67]) suggest that nonlinear formulations of the
linear complementarity problem should be investigated further.

The present paper proposes and analyzes several nonlinear homotopies for the
linear complementarity problem. The existence theorems implied by the globally con-
vergent homotopy theorems are as general as any derived by other methods. Section 2
defines some terminology, Sections 3-9 describe and analyze different homotopy maps,
Section 10 describes some numerical experiments, and Section 11 summarizes.

9. Preliminaries. In this section we gather some terms and fundamental results
about globally convergent homotopy methods. For additional background refer to [65],
[68].

Let E™ denote n-dimensional, real Fuclidean space and let £7*™ be the set of
real n X » matrices. The ¢-th component of a vector » € E™ is denoted by v;, and for
a matrix A € E"X" A, denotes the i-th row and A.; denotes the j-th column. For
subsets § £ I,J C {1,...,n}, A;y denotes the submatrix of A with rows indexed by
7 and columns indexed by J. Let e € E™ be the vector such that ¢; = 1 for all 4. For
v € E™, v+ denotes the vector with components (v-+); = max{0,;}, and v— denotes
the vector with components (v—); = max{0, —v;}. The support of v, denoted by 5(v),
is simply {i | v; # 0}. We use the following notation when comparing a vector a € £™
o 0: :

20 ifa; 20 for all e,
a>0 ifaz0anda#0,
a>0 ifa>0forali

Let M € E™*™ be a real n X n matrix and let ¢ be a real n-vector. M is
nonnegative if each element of M is nonnegative, copositive if 2*Mz 2 0 for all z 2 0,
and strictly copositive if z? Mz > 0 for all z > 0. M is called nondegenerate if all of its
principal minors are nonzero, and a P-matriz if all of its principal minors are positive.
The vector ¢ is nondegenerate with respect to M if ¢ is not a linear combination of
any n — 1 columns of (I, —M). Finally, M is strictly semimonotone if for each vector
z > 0, there exists an index k& such that @,(Mz); > 0.

When w 2 0 and z 2 0 satisfy w — Mz = q, (w, 2) is called a feasible solution. If
wtz = 0 also, (w, z) is called a complementary feasible solution.

A C? (twice continuously differentiable) function F' : E™ — E™ is said to be
transversal to zero if the m x n Jacobian matrix DF(z) has rank m on F~'(0).
The theoretical justification for modern probability-one homotopy methods rests on a
result from differential geometry, known as a parameterized Sard’s theorem [65]:

LeMMa 2.1, Let p: E™ x [0,1) x E® — E™ be a C* map which is transversal to
zero, and define

pa(X,2) = pla, A, z).
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Then for almost all a € E™, the map p, is also transversal to zero.

The significance of Lemma 2.1 is partially given by

LEMMA 2.2. In addilion to the hypotheses of Lemma 2.1, suppose that for each
a € E™ the system p,(0,2) = 0 has a unique solution 2(%. Then for almost all o € E™
there is a smooth zero curve y C [0,1)X E™ of p,(), z), emanating from (0, 2(°)), along
which the Jacobian matriz Dp,(A, z) has rank n. v does not intersect itself or any
other zero curves of p,, does not bifurcate, has finite arc length in any compact subset
of [0,1) X E™, and either goes to infinity or reaches the hyperplane A = 1.

LEMMA 2.3.Under the hypotheses of Lemma 2.2, if the zero curve v is bounded,
then it has an accumulation point (1,%). Furthermore, if rank Dp,(1,%) = n, then v
has finite arc length.

Conceptually, the algorithm for solving the nonlinear system of equations F(z) =
0 is simple. Using the lemmas above, just follow the zero curve «, starting from some
point (0, 2(%) and ending at a point (1,2}, where # is a zero of F(z). Computationally
this may be nontrivial, but at least the idea is clear. A typical simple choice for the
homotopy map is

pa(M2)=AF(2)+ (1 - M)z —-a),

Although this homotopy map has the same form as a standard continuation or em-
bedding mapping, there are two important differences. First, in standard continuation
the embedding parameter A increases monotonically from 0 to 1 as the trivial prob-
lem (2 — a) = 0 is continuously deformed to the given problem F(z) = 0. With the
present homotopy method, turning points on + cause no special difficulties and so A
can increase and decrease as the curve is being tracked. Secondly, the fact that the
Jacobian matrix Dp, has full rank along v, and the way in which the zero curve is
tracked, guarantee that there are never any “singular points” which afflict standard
continuation methods.

3. The 1979 Homotopy. To provide a backdrop for the homotopies presented
in the next few sections, we briefly review the homotopy map of [66]. Mangasarian
[33] has shown that the linear complementarity problem (g, M) can be reformulated
as a zero finding problem

H(zy=10

where H(z) can be made as smooth as desired. Taking #{1) = ¢ in Mangasarian’s
Theorem 1 [33], we define H(z) by

Hi(z) = —|Miz + qi — 2P + (Miz+ @) + 2°

and
Pa(X,2) = AH(2)+ (1 = N)(z — a).

By noting the signs of each term in H, it is clear that z 2 0, Mz + ¢ 2 0, and
(Mz+q)'z=01if and only if H(z) = 0. That is to say, 2 solves the LCP if and only if
I (z) = 0. The following result from [66] gives conditions on the matrix M to insure
that a zero curve of the homotopy map p, can be tracked to obtain a zero of H.
TreorEM 3.1. Let M € E™*™ be either positive definite, a P-malriz, nonde-
generate strictly copositive, or nondegenerate strictly semimonotone, and let ¢ € E™
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be nondegenerate with respect to M. Then there exists § > 0 such that for almost all
a 2 0 with ||alleo < & there is a zero curve v of py(\, z), along which Dp,()\, z) has
Jull rank, having finite arc length and connecting (0,a) to (1,2), where % is a zero of
H(z).

Although it was not stated in [66], the proof of Theorem 3.1 there showed that
if the nondegeneracy assumptions are removed then the conclusion still holds except
that (1,2) is only an accrmulation point of the zero curve v (of possibly unbounded
variation). The map p, above is the standard homotopy map. In the contexi of this
paper we can view it as relaxing all of the solution requirements of the LCP while the
zero curve is being tracked. Initially z is set to some arbitrary point «a having nothing
to do with the solution to (¢, M). As A gets closer to 1 we can say that, in some
sense, 7 gets closer to such a solution. However, for any A < 1, z and w = Mz + g do
not necessarily form a feasible solution or a complementary solution to (g, M). These
conditions are imposed only at the end, when A = 1, and then all at once. In the next
few sections we present several homotopies, based on Mangasarian’s function, that
attempt to maintain at least feasibility or complementarity for a modified L.CP right
from the start. The hope is that the homotopy process is then more efficient.

4. Relaxation of M. In this map, all of the continuation is applied to the
matrix. We maintain a complementary feasible solution for some other matrix which
is a convex combination of M and the identity. When A = 0, the matrix is the identity
and when A = 1 the matrix is M. We can view this map as relaxing only the matrix
M as the zero curve is being tracked.

Define A :{0,1) x E™ — E™ by

Ai(A2) = =[[(1 =T+ AMiz 4 gi — " + ([(1 = NI+ AMs.z + ¢:)° + 23

fori=1,...,n.

Observe that since this is simply Mangasarian’s map with a modified matrix for
M, feasibility and complementarity are preserved wherever A is zero.

LEMMA 4.1. Let P be any of the following properties

A) posttive definite,
B) P-matriz,
C) nondegenerate strictly copositive,

D) nondegenerate strictly semimonotone,

and let 0 £ A 2 1. If a matriz M € E™*™ has property P, then (1 — M\ + AM also
has property P except possibly for finitely many values of A.
Proof. A) It follows from the definition of positive definite that

' (1 - NI+ AM]z = (1-M(zz) + Mz*Mz) > 0,
for all # # 0 whenever M is positive definite.
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B) It can be shown [13] that M is a P-matrix if and only if for all 2 # 0 there is
an index k such that zx(Mz); > 0. Let M be a P-matrix and let z # 0. Then

(1= 1+ AMle), = (1 — Nap(Tz); + Aep(Me)y,
= (1= X)zi + dzp(Mz)y
>0

for some index k.
Let M be nondegenerate and let K C {1,...,n}. Because the determinant is
multi-linear we have

det((1 - NI +AM) . = Z(l_ NIEI=VIAY det 355,

JCK

KK

which is simply a polynomial in A. Notice that, since {(1 — AYEmiNI | 0=j5=2 k}
forms a linearly independent set of polynomials, and det M ;7 # 0 for any subset J C
{1,...,n}, this polynomial is not identically zero. (By convention, det My = 1.) This
polynomial has only a finite number of zeroes and so (1 — A)f + AM is nondegenerate
except for finitely many values of A.

C) It follows from the definition of strictly copositive that

2 [(1 = NI+ MMz = (1 - A)(z*z) + A(z'M=z) > 0,

for all z > 0 whenever M is strictly copositive.

D) An argument similar to that for B) holds if M is strictly semimonotone and
x> 0. Q. E. D.

Lemma 4.1, Theorem 3.1 and the subsequent remark give us the following theo-
rem.

THEOREM 4.1. Let M € E™*™ be positive definite or a P-matriz, and let ¢ € E™.
Then there exists a zero curve v of A emanating from (0,qg—) and reaching a point
(1,2), where z solves the LCP (g, M).

Note that Theorem 4.1 does not include strictly copositive or strictly semimono-
tone matrices, nor any reference to the rank of the Jacobian matrix along the zero
curve . If M is nondegenerate strictly copositive or nondegenerate strictly semi-
monotone, there is a solution to the LCP (g,[(1 — A} 4+ AM]) for every A € [0,1]
by Theorem 3.1. However, there may be multiple solutions, and when the number of
solutions changes at some A some of the zero curves of A either “stop” or “start” at
A. Thus there is no guarantee that a single zero curve of A will reach all the way from
A =0to A= 1. For example, take

3 2 10 ~5.3
M=|01 10}, g¢={-40
10 1 —0.9



M is nondegenerate strictly semimonotone, but the zero curve emanating from (0, g—)
disappears at A = 0.8 . Also we cannot say that the Jacobian matrix DA(A,z) is
nonsingular along the entire zero curve v. The i-th row of the Jacobian matrix of A is

(DA(N, 2)), = (—3|AJ(AN—T + M)z + 3(B)* (-1 + M);.z,
— 3JA|(A)(Ama) + 3(BY (Amar), .. .,
= 3JA|(A)(=A 4 dmii) + 3(B)H(L = A+ dmig) + 34,
— 3|A|(A)(Amin) + 3(B)Y (Amir))

where A =[(1 - M+ XMz + ¢ — 2,
B=[(1-M+ Mz + q.

Observe that if |g| > 0, then rank DA(0,¢—) = n, and so the starting point z = ¢—
for the zero curve is nonsingular.

ProprosITION 4.2. Let M € E™*™ be positive definite or a P-malriz, and let
g € E". Whenever M and q are such that (@, %), the solution to (q, M), has S(Z) #
S5(g-), the Jacobian matriz of A has singularities along the zero curve v of A. There
is at least one singulority for each element in the disjoint union

(5(z)u S(g=)) \ (5(2) N 5(g-))-

Proof. Let (@, Z) be the solution to (¢, M) and let 7 € S(2)\ §(¢g—). First note
that, on the (unique) zero curve 7 of A, both z and w are continuous functions of A.
Since 2 = g— when A = 0, there must be a point Ag such that, along the zero curve,
z; =0for 0 2 A £ Ag and z; > O for Ag < A < Ag+¢ for some €. Since complementarity
is maintained along the zero curve, w; = 0 for Ay < A < Ay + ¢. By continuity, w;
must be 0 at A = Ap. This means that both z; and w; = [{1 — M) + AM];.2 + ¢; are
zero at A = Ag, and hence the Jacobian matrix DA{Xg, 2(Ao)) is singular.

Similarly, let ¢ € S{g—)\ S(2). There must be a point A; such that, along the
zero curve y, z; > 0 for 0 £ A < Ay and z; = 0 at A = A;. Again by complementarity
and continuity, w; must be 0 at A = Xy and the Jacobian matrix DA{N\,2(N)) is
singular. Q.E. D.

5. Relaxation of g. We can also relax the right hand side of the LCP keeping
the matrix M fixed. This map maintains feasibility and complementarity, but uses a
convex combination of the vectors ¢ and }|g|{ s e for the right hand side of the equation.
When A = 0, we have the trivial problem (||¢|icce, M)} where the right hand side has
all components positive and, when A = 1, we have the given problem {q¢, M ).

Define © : [0,1) x E® — E™ by

0:(\,2) = —|Miz + Agi + (1 = Mldalloo — %] + (Miz + Agi + (1 = X)||g]loo)” + 23
fore=1,...,n.
Since this is once again Mangasarian’s map with a slightly different vector for ¢,

feasibility and complementarity on the zero set of © is guaranteed. By Theorem 3.1
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and the remark following it, we know that the LCP has a locally unique solution for
any g whenever M is nondegenerate strictly semimonotone. Thus we easily have the
following theorem about O.

THEOREM 5.1. Let M € E™*" be positive definite or a P-matriz, and let g € B™.
Then there ezists a zero curve vy of ® emanating from (0,0) and reaching o point (1, 2),
where % solves the LCP (g, M).

Note that Theorem 5.1 does not include strictly copositive or strictly semimono-
tone matrices, nor any reference to the rank of the Jacobian matrix along the zero
curve 4. If M is nondegenerate strictly copositive or nondegenerate strictly semi-
monotone, there is a solution to the LCP (Ag + (1 — A)|lgllcce, M) for every A € [0,1]
by Theorem 3.1. However, there may be multiple solutions, and when the number of
solutions changes at some A some of the zero curves of @ either “stop” or “start” at
X. Thus there is no guarantee that a single zero curve of @ will reach all the way from
A=0to A= 1. For example, take

1 5 10 _2
M=1{51 10}, g=|[-2
11 1 1

M is nondegenerate strictly semimonotone, but the zero curve emanating from (0,0)
disappears at A = 4/5.

Furthermore, we cannot say that the Jacobian matrix is nonsingular along the
entire zero curve. The i-th row of the Jacobian matrix of © is

(DO(A,2)),, = (= 3|A[(A)(gi ~ llglloo) + 3(B)(gi — llllec)s
— 3|Al(A)(may) + 3(B)Ymay,. ..,
— 3| AJ(A)(mg; ~ 1} + 3(BYmy; + 322, ..,
— 3[A|(A)(min) + 3(B) 1min)

where A = M.z + Ag; + (1 — A)||¢)|oo — 2,
B = Mz + 2gi + (1 - A)|gfico-

Note that the first column and the diagonal element differ slightly in form from the
rest of the entries. Also note that if z; and w; = M;.24+Mg; +(1— A)ig|jec are both zero
for some A, then every entry in (D). is 0. Hence, the Jacobian matrix is singular
and we have the following propaosition.

ProrosiTioN 5.2. Let M & E™*™ be positive definite or a P-matriz, and let
q € E™. Whenever M and g are such that (,%), the solution to (¢, M), has Z £ 0,
the Jacobian matriz of @ has singularities along the zero curve v of ©. There are af
least as many singularilies as there are nonzero components of z.

Proof. Let (,%) be the solution to (¢, M) and let ¢ be such that 2; > 0. First
note that, on the (unique) zero curve v of 0, both z and w are continuous functions of
A. Since z = 0 when A = 0, there must be a point Ap such that, along the zero curve,
z;=0for 0 £ X € Xgand z; > 0for Ao < A < A +¢ for some ¢. Since complementarity
is maintained along the zero curve, w; = 0 for Ay < A < Mg + €. By continuity, w;
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must be 0 at A = Ag. This means that both z; and w; = M.z + Ag; + (1 — A)l|gleo are
zero at A = Ap, and hence the Jacobian matrix DO(Ag, 2(Ag)) is singular. Q. E. D.

Geometrically, the singularity corresponds to the point at which the vector Aq +
(I — A)llg}ls passes through the boundary of one complementary cone [44, 48, 56,
62] and into another. I it happens that this vector stays in such a boundary for all
A in some interval [Ag, A1], then z; and w; are simultaneously 0, and the Jacobian
matrix is singular, along that entire interval. Since there are a finite number (27) of
complementary cones, however, we can always perturb the right hand side by adding
some (¢,¢%,...,€"), for example, so that there are only a finite number of singularities.

6. Relaxation of complementarity. This section presents a map that uses
the given matrix M and the given vector ¢, but does not maintain a complementary
solution as we track the zero curve. Although nonnegativity of z is preserved along
the curve, complementarity is enforced only at the very end of the curve, when A = 1.
Throughout this section, let M € E™*™ and ¢ € E™ be fixed.

Define ¥ : E® x [0,1) X E™ — E™ by
Ui(a, M z) = =AMz + g — 2z + MMz +¢)® + 285 — (1 - Aa®

for i = 1,...,n. For fixed ¢ € E™ let W,(A,2) = ¥(e,A,z). The next few lemmas
show that, for suitable matrices M, there is a zero curve of ¥ that can be tracked to
obtain a solution to the LCP (¢, M).

LeMMA 6.1. Ifa 20, then 2 2 0 on ¥71(D).

Proof. Note that if both z; and My.2 + g, are negative, then the entire sum
comprising (U,(A, ) is negative. If, on the other hand, 2, < 0 and M. 4+ g, 20,
then |My. + gi] < My. + gr — 2, and the sum is again negative. Q. E.D.

LEMMA 6.2. Let M be strictly semimonoione. Then there exists » > 0 such that
z€ E", 220, and ||z||eo =  implies that zx(Mz + q),. > 0 for some index k.

Proof. First let

P(z) = 1I§iaéxn zi(M z);
and note that, because M is strictly semimonotone, ® > 0 for z > 0. Also note
that since @ is continuous and {z: 2z 2 0,||z]|ec = 1} is compact, & must assume its
minimum on that set. Call that minimum ¢ and take r > ||¢|lco/®. Then for z 2 0
and ||#]|e = 7, there is some index k such that

2(Mz+ 0k = ||2ll5®(2/||2lle0) + 250
12018® = llzllos llloo

= [[2lico ([l #ll00 @ = llalfco)
> 0.

I

Q. E.D.
LEMMA 6.3, Let M be strictly semimonotone. Then there exists r > 0 such that
Uo(A,2) 0 for 02 A L1 and {|2]jeo = 7.



Proof. By Lemma 6.1, it suffices to consider » 2 0. Let » and & be as in the
conclusion of Lemma 6.2 above and simply notice that, since #; and (M2 + ¢)r are
both positive, ¥y(A, #) cannot be 0. Q. E. D.

LeMMA 6.4. Let M be strictly semimonotone. Then there exists r >0 andéd >0
such that 0 £ XA £ 1, |lz||ce = 7, and ||a||eo < & implies U,.(A,2) #0.

Proof. Let r be as in Lemma 6.3, and note that {(a, A 2) | a=0,02A%51,
2lioo = r} is disjoint from ¥=1(0). Since the first of these sets is compact and the
second is closed there is a positive distance § > 0 between them, measured in the max
norm. This § satisfies the conclusion of the Lemma. Q. E.D.

Notice that a positive definite matrix is also a P-matrix, a P-matrix is strictly
semimonotone by the sign-reversal property of P-matrices [13], and a strictly coposi-
tive matrix is clearly strictly semimonotone, Hence, Lemmas 6.1-4 hold for any such
matrix and we can state the following theorem.

THEOREM 6.5. Let M € E™*™ be positive definite, a P-matriz, strictly copositive,
or strictly semimonotone, and let ¢ € E™. Then there exisis § > 0 such that for almost
all @ > 0, ||allo < & there is a zero curve v of V(A z), along which the Jacobian
matriz DU, (A, z) has full rank, emanating from (0,a) and reaching a point (1,2),
where Z solves the LCP (g, M).

Proof. First observe that, for ¢ > 0, ¥ is transversal to 0 (i.e., its Jacobian
matrix has full rank on ¥=1(0)). To see this note that 0%;/0a; is zero if i # j, and is
nonzero if ¢ = j. Thus, the n columns of DT corresponding to the partials of ¥ with
respect to the o; are linearly independent. Clearly, ¥, is C?, and therefore by Lemma,
2.1, for almost all @ > 0 ¥, is also transversal to 0. Thus, by the implicit function
~ theorem, ¥, has a zero curve v, starting from (0,a), along which the Jacobian matrix
DV, (A, 2) has full rank. All of this is true regardless of the conditions on the matrix
M.

For M strictly semimonotone (positive definite, strictly copositive, or a P-matrix),
Lemma 6.4 insures that there exists § > 0 such that the zero curve ¥ is bounded for
llelloc < & and 0 £ A £ 1. Note that (0,a) is the unique zero of ¥, at A =0, and
by the implicit function theorem, % cannot return to (0,a). Since the curve cannot
simply stop, nor return to A = 0, nor go to infinity, it must reach a point (1,%), where
z solves the LCP (¢, M). Q. E.D.

7. Expanded Lagrangian Homotopy. The expanded Lagrangian approach

[54] may be described as an optimization /continuation approach and has in its simplest
form two main steps.

Step 1. (Optimization phase).
At 7 = vy > 0 solve the unconstrained minimization problem

1;[1U1;1 Plw,z,r)
where
Plw,z,7) = EHw - Mz gl + E(w,z) - r;mzi - r;hlwg.
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Step 2A. (Switch to expanded system).
A (local) solution of min P must satisfy

O:V(w,z)P:( 4 )M+(Z)<—w-’fl—r(—l—,... ii...,i)t.

t » ] b
-M T w P wy Wy 21 Zn

Introduce the following variables:

w— Mz —
p=—""
g (w;z)’
p,:wii, i=1,...,m,
m:z%, t=1,...,n,

which ultimately represent the Lagrange multipliers. This helps to remove the in-
evitable ill-conditioning associated with penalty methods for small » and we thus
obtain our equivalent but expanded system:

(i) (2)e- (1) =0

w-Mz—g—r8=0,

{w, z) — 78 = 0,
piw; —r =10, r=1,...,n,
mz—r =0, i=1,...,n.

(Remark. As a result of the optimization phase and the initial starting point with
ro > 0, the solution (w(®),2(%) of min P(w,z, 7o) satisfies 2(® > 0 and w(® > 0. As
a consequence, u'® > 0 and 7(® > 0 from the definitions of p# and . They remain
positive until » = 0 where we formally have

I z
(e )o(2)e-(5) =0
w—Mz—-g=0,
(w,z) =0,
paw; =0, i=1,...,n,
iz = 0, t=1,...,n,
wzzygnu’?n 20,
which implies that we have solved the problem.)
In practice we do not solve the optimization problem min P to high accuracy

since a highly accurate solution may have only a digit or two in common with the
final answer. However, it is imperative that VP be reasonably small in magnitude,
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say less than 74/10. The expanded system is converted to a homotopy map by letting
r = ro(1 — A) and modifying the first equation to obtain:

1 ZNg_(BY_ T ©) L0 . y_
() o+ (2)0-(8) - £vr@®,:0,m) =0,
w—Mz—~q—r3=0,

(w,z) —r8 =0,
My —r =0, i=1,...,n,
Th’Z{-?":U, i:l,...,n.

Write this system of 5n 4 1 equations in the 5n + 2 variables A\, w, 2, 8, 4, u, 1 as
T(’\vwvzvﬁaaa#an) =0.
Step 2B. (Track the zero curve of T {rom r = rp to 7 = 0.)

Starting with arbitrary 7 > 0, w(® > 0 and 2(® > 0, the rest of the initial point
(0,w(®, 2400, B0) gy 1(0) p(®)) i given by

40 w® M0 _ 4
To ’
_ (HORIOS
0 o ’
{0) _ _To _
By = mv = 11 s Ty
ngﬂ):%, t=1,...,n
i

This approach requires careful attention to implementation details. For example,
the linear algebra and globalization techniques with dynamic scaling are critically
important in the optimization phase. For degenerate problems the path can still be
long. One possible resolution is the use of shifts and weights as developed in the
method of multipliers [5], but holding r = 7o fixed. (This approach is currently
under investigation in the context of linear programming [53).) However, in keeping
with the philosophy of the “pure” homotopy approach of the current work, we do
not solve the optimization problem (Step A.), but instead use the above equations
T(Aw,2,5,0,1,7) =0 as a “pure” homotopy.

Logarithmic barrier potential functions are hardly new [5], and have been used
recently by Kojima, et al.,, [26], [27] and Mizuno, et al., [38] to extend the ideas of
Karmarkar to obtain polynomial-time algorithms for the LCP. The exact details of
how the barrier parameter, step size selection, concomitant numerical linear algebra,
and initial point computation are handled are crucial to the practical utility of such
methods, and in practice are far more significant than theoretical polynomial com-
plexity. It is reasonable that the pure expanded Lagrangian homotopy (without the
optimization step) would behave significantly different from other logarithmic barrier
homotopies [26], {27], [38] which include a Phase 1 step equivalent to Step A here.
These latter homotopies of Kojima, ef al., are certainly not globally convergent, since
they require a nontrivial preliminary computation to get a special starting point at
which to begin the homotopy.
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8. Absolute Newton method. The method of this section is not a homotopy
method, but is presented for the sake of comparison and as an example of what can be
done with a Newton type iterative scheme (see also [1] and [35]). Let = = (w,z) € E2»
and define I : E*" — E%" by

w—Mz—gq

w1z
F(z) =

WniZn

Then the LCP (¢, M) is equivalent to F(2) = 0 for  nonnegative. F(z) = 0 is a
polynomial system of equations of total degree 2", which in general has 2% solutions
over complex Euclidean space C?", counting multiplicities and solutions at infinity.
Thus all solutions of the LCP (¢, M) are among the zeros of F(z), including degenerate
solutions, which correspond to manifolds (in C*") of zeros of ¥(z). The algebraic
geometry theory of polynomial systems is rich and deep, and beyond the scope of this
paper. Discussions of the pertinent aspects of algebraic and differential geometry for
polynomial systems are in [39], [40], [41], and [68]. Tt suffices to note here that F(z)
is a polynomial system with a particularly simple structure.
The Jacobian matrix of F is

7 —M
DF(z) = (djag(zl,...,zn) diag(wb---s'wn)),

a 2n X 2n matrix. The absolute Newton iteration is

SO ‘a:(k) _ [DF(x(k))]—lF(m(k))[, k=0,1,2,...

for an arbitrary starting point #(®) ¢ E2%. The absolute value signs mean to replace
each component of the vector by its absolute value (precisely, [z} = 2+ + 2—). When
this iteration is well defined is given by the following theorem:

THEOREM 8.1. Let M € E™*™ be nondegenerate and let = (1,%) be a zero of
F. Then the Jacobian matriz DF(Z) is invertible if and only if |®] + |7} > 0.

Prooj. Suppose that @ = Z; = 0. Then the (n + k)th row of DF(Z) is zero, so
DF(Z) is not invertible.

Conversely, suppose that @]+ || > 0. Observe that @ and 7 are complementary
vectors, since & = (1, Z) is a zero of F. For each index k such that 2, # 0 interchange
the kth and (n + k)th columns of DF(Z). This produces a matrix of the form

A *
0 diag(@y + Z1,..., Wn +2n) )’

where A.; € {I.;,—M.} for i =1,...,n. det Ais a principal minor of — M and is thus
nonzero since M is nondegenerate by assumption. Further, since |w|+ |Z| > 0 and o,
Z are complementary, @; + % # 0 fori = 1,...,n. Thus

det DF(Z) = £ det A det diag(@1 + Z1,...,%, + Z,)

T
= +det A [J(@ + 2)

i=1
# 0,
12



and DF(%} is invertible. Q.E. D.

This absolute Newton iteration has been used for chemical equilibrinm systems,
which have a unique real positive solution. It has never been observed to fail for
those systems with a random starting point 2{% [36]. The asymptotic behavior of this
absolute Newton iteration is not understood, nor even the ordinary Newton iteration
in complex Euclidean space C*", which is related to Julia sets and chaotic dynamical
systems. Both the standard Newton iteration and the absolute Newton iteration were
tried on F(z) = 0, where M was a P-matrix, and both completely failed for starting
points distant from the solution. Why the absolute Newton method should be so
successful on chemical equilibrium polynomial systems, and fail on LCP polynomial
systems, is not clear.

9. Kojima-Saigal homotopy. This homotopy [25] uses the same nonlinear
system as the absolute Newton method. Suppose that w(®,2(®) € E™ have been
obtained such that

w® — M0 =g
w® > 0, 29 >o.

This can be done, for example, by applying Phase 1 of the simplex algorithm to the
problem

w—Mz=q¢g—e+ Me,

w20, z20,

to get a feasible solution (@,2) 2 0. Then w(® =@+ e > 0 and 200 = 7+ ¢ > 0 will
suffice. The homotopy map X : [0,1) X E™ x E™ — E* is given by

w—Mz-~gq

w2 — I_Aw(o)z(o)
EQXw,z)=] 1 (1= Awi"a;

Wy zp ~ (1 — A)mﬁ”z&‘”

The following theorem shows that this is a reasonably good homotopy map, at least
for P-matrices.

THEOREM 9.1. Let M € E™*™ be a P-matriz and let ¢ € E*. Then there exist
w(®, 20 € En such that

w® — 20 = g, w®> 0, 29>o.

Furthermore, there is a zero curve v of K(\w,z), along which the Jacobian matriz
DK (A w,z) has full rank (for 0 £ X < 1), emanating from (0, w2 and reaching
a point (1,%,z), where Z solves the LOP (¢, M). X is strictly increasing as a function
of arc length s along v (d)\/ds > 0).

Proof. Since M is a P-matrix, the LCP (g — e+ Me, M) has a solution (1, 2) by
Theorem 6.5. Then w(® =4 +e > 0and 2% = 34+ ¢ > 0 have the desired properties.
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The Jacobian matrix of K(\, w,z) is

0 -M
ng)Z{O)
DE(Aw,2) =
( ) : diag(21,...,2,) diag(wy,...,wy)
wi(lo)z?(%())

Suppose (w,z) > 0 and consider the last 2n columns Dy K of DK

det Dw,) K = det (dia,g(zj. ey Zn) dia.g(w;f{ . wn))
= det (I . _M. )
0 diag(wy,..., w,)+ diag(z1,...,2,) M
= det (diag(wy, ..., wa) + diag(z,. .., 2,) M)
>0
since diag(wi,...,wn) + diag(#1,...,2,) M is also a P-matrix (it is easily verified

that the principal minors remain positive after multiplying by and adding a positive
diagonal matrix). Thus rank DK (A, w, zy=2nfor0SA<landw >0,z >0. By the
Implicit Function Theorem, there is a zero curve v of K emanating from (0, w(®), z(ﬁ)),
and the Jacobian matrix DK (A, w, z) has full rank along v for 0 £ A < 1 since w > 0,
z > 0 along v by continuity and the definition of K.

7 can be parametrized by arc length s, giving A = A(s), w = w(s), z = 2(s)
along 7. Furthermore, the last 2n columns of DK (A(s), w(s), #(s)) being independent
means that w = w(A), 2 = #(A) and dA/ds > 0 along v (this is well known, see [65],
for example). Thus X = A(s) is strictly increasing along +.

To prove that v reaches A = 1, it suffices to prove that vy is bounded. Let
o= ij{”AHoo, lA™ oo}, where the maximum is taken over all matrices 4 € EnX®

with A; € {I;,—M,}fori=1,...,n. ais well defined since each det 4 is a principal
minor of ~M, which is nonzero by assumption. Fix Ay in (0,1), and let € = max;(1 -
Ag)wgo)zgo). Then for Ao < A(s) £ 1, either wi(s) < ¢ or 2z(s) < ¢ along v. For
i = 1,...,n, let y; be wi(s) or z(s), whichever is less than ¢, and let g; be the

complementary variable. Write w(s) — M 2(s) = ¢ as
Then

1l = 187" (¢ = AD)l| o £ 1B7]|,, (lalloo + 1 41Lee Illo0) < el + ae),

which says that w(s) and 2(s) are bounded for Ay < A(s) £ 1. Q.E. D.

Note that the theorem does not include strictly semimonotone matrices since
diag(wr, ..., wa) + diag(z1,...,2,) M can be singular for strictly semimonotone M.
Thus while K is a better homotopy than A, ®, and T, it is not as generally applicable

as pg or U,.
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10. Numerical experiments. The homotopy maps from the previous sections
were tested on several problems, chosen to illustrate certain features of the various
homotopies. A complete description of the data, tables of numerical results, and
a comparative discussion of the different homotopy maps and numerical results are
in [70]. The main observations from those experiments are summarized here: The
probability-one homotopies pa and ¥, work for everything that the theory predicts.
The computational complexity of p, and ¥,, measured by the number of steps along
the zero curve, is relatively insensitive to n. This is in direct contrast to pivoting
methods, which can exhibit exponential complexity in the number of steps [47]. The
homotopies A and © irequently fail, but when they work at all, may be more efficient
than the homotopies p, or ¥,. The expanded Lagrangian homotopy Y without the
optimization phase fails for most starting points, with the zero curves of T either
going off to infinity or returning to another solution at 7 = ry. T does work very
well from sufficiently close starting points, but these are not random starting points
(as are used for p, and U,), and the homotopy algorithm based on T without opti-
mization is certainly not globally convergent. The Kojima-Saigal homotopy requires
Phase 1 of the simplex algorithm just to get a starting point, which is antithetical
to the homotopy philosophy of global convergence from an easily obtainable starting
point. Furthermore, & and ¥, both essentially relax complementarity, and ¥, is more
generally applicable.

11. Conclusion. There are many reasonable ways to construct a homotopy
map for the LCP, and only a few of the possibilities have been considered here. The
homotopies here fall into three different classes: artificial, natural, and interior. (See
the discussion of the words “artificial” and “natural” in relation to homotopies in [69].)
A and © are “natural” homotopies in the sense that for each A € [0,1] the equation
A(Az) = 0 or ©(A,2z) = 0 corresponds to an LCP. Thus, the intermediate points
(A, z) on the zero curve of the homotopy map have interpretations as solutions to a
related family of LCP’s. In contrast, p, and ¥, are “artificial” homotopies in that
the homotopy equations Pa(A 2) = 0 and Ty(), z) = 0 do not correspond to an LCP
for 0 < A < 1, and the points (A, z) on the zero curves for 0 < A < 1 have no useful
interpretations as LCP solutions. T and K would be considered “interior” methods,
since they only generate points (A, w, z) interior to the feasible region, i.e., (w,z) > 0
for 0 £ A < 1. These class distinctions are not always clear-cut, but are useful at a
high conceptual level.

The theory of globally convergent probability-one homotopy maps can be applied
to the LCP in several ways; the maps p; and ¥, are two examples. The convergence
theory for the homotopy maps p, and ¥, is very satisfactory: global convergence from
an arbitrary starting point is guaranteed for a wide class of LOP’s. Theorems 3.1 and
6.5 are existence results, and as such are close to the best known existence results,

Qur computational experience, reported in [70], indicates that ¥, is the best
homotopy. It never failed, is indeed globally convergent, and was frequently more
efficient than A and © even on problems where A and © did well. p, takes second
place, since it also never failed, but tends to be very expeusive (long homotopy zero
curves). This is not surprising, since ¥, was crafted with the benefit of ten years expe-
rience since p, was created. It is quite likely that a more efficient globally convergent
homotopy map than ¥, can yet be constructed.
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A and © failed badly on problems with many singularities {corresponding to the
right hand side passing through the face of a complementary cone) along the zero
curves of the homotopy maps A and ®. One might hope that the curve tracking
algorithms would, by chance, miss hitting the singularities exactly and thereby step
past them. This does happen, to some extent, but when there are a large number of
singularities close together or highly rank deficient singularities (corresponding to the
right hand side passing through a lower dimensional face of a complementary cone),
the numerical linear algebra is simply overwhelmed by the ill conditioning.

Overall, the natural homotopies A and © are much worse than the artificial homo-
topies p, and ¥,. For particular problems, a natural homotopy may be very efficient,
but their performance is unreliable and very much data dependent. The difficulties,
both theoretical (¢f. Propositions 4.2, 5.2) and practical, of natural homotopies like
A and © appear to remove them from further consideration (¢f. the discussions in
[39]-[41] and [69]).

The numerical experiments show that the expanded Lagrangian homotopy is un-
acceptable as a robust homotopy without solving the optimization problem (Step A).
The zero set of T contains loops (in [0,1) x E* 1) starting and ending at A = 0
as well as unbounded curves. Although the increased dimension is discouraging, we
do note that 2n of the 5n + 1 equations result in diagonal matrices which can be
exploited in the linear algebra. Furthermore, T does work well for fair starting points,
and so T may be useful for LCP’s using an optimization phase to get a fairly good
starting point. Although the expanded Lagrangian homotopy is an interior method
based on a logarithmic barrier potential function similar in spirit to methods of Ko-
jima, et al., [26], [27], [38], it is not equivalent to any of those methods. The Kojima,
et al., methods converge to a solution in polynomial time from an arbitrary interior
starting point (for a restricted class of LCP’s), which is not true of the expanded
Lagrangian homotopy method. However, generating a feasible interior starting point
for K is tantamount to the optimization Step A for T, and neither X nor T can be
considered a globally convergent homotopy for the LCP in the same sense as Pa and
V,. Furthermore, the Kojima, et al., homotopies without Phase 1 would be even less
successful than the expanded Lagrangian homotopy is without Step A.

The Kojima-Saigal homotopy is closely related to the continnous Newton homo-
topy of Smale. Both are theoretically interesting, but computational experience on
real problems [67], [68] suggests that the globally convergent probability-one homo-
topies (like p, and ¥,) are more robust and more general than the continuous Newton
homotopies. Our numerical experience is that interior homotopies like T and K (lack-
ing dynamic scaling) are very inefficient, but worthy of further study. At any rate,
V¥, is more general than K (c¢f. Theorems 6.5 and 9.1). Similar comments apply
to the polynomial-time homotopies of (26], [27], and [38], which are both less stable
numerically and less generally applicable than probability-one homotopies like ¥,.

There are numerous fixed point iterative schemes for the LCP [2, 3, 8, 18, 35,
50, 51, 61], but they generally involve nonsmooth operators (e.g., v+ or |v]) or apply
to a small class of matrices (e.g., symmetric positive definite 4/). Homotopy algo-
rithms are more versatile than fixed point iteration algorithms, but whether they are
competitive with fixed point iteration remains to be seen. A systematic comparison
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of complementary pivoting, fixed point iteration, and homotopy methods would be 2,
worthwhile undertaking.

The LCP is a linear combinatorial problem. That the LCP should be reformu-
lated as a nonlinear problem, which is in turn embedded in a complicated nonlinear
homotopy, is counterintuitive. Nevertheless, a homotopy algorithm based on Vo(A, 2)
is globally convergent for a wide class of LCP’s, numerically robust, reasonably effi-
cient, and (most encouraging) rather insensitive to the dimension of the problem.

12. Acknowledgement. The authors are indebted to Jong-Shi Pang, Katta
Murty, and Romesh Saigal for useful comments and suggestions,
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