473 research outputs found

    Interferometric imaging of the sulfur-bearing molecules H2S, SO and CS in comet C/1995 O1 (Hale-Bopp)

    Full text link
    We present observations of rotational lines of H2S, SO and CS performed in comet C/1995 O1 (Hale-Bopp) in March 1997 with the Plateau de Bure interferometer (IRAM). The observations provide informations on the spatial and velocity distributions of these molecules. They can be used to constrain their photodissociation rate and their origin. We use a radiative transfer code which allows us to compute synthetic line profiles and interferometric maps, to be compared to the observations. Both single-dish spectra and interferometric spectral maps show a day/night asymmetry in the outgassing. From the analysis of the spectral maps, including the astrometry, we show that SO and CS present in addition a jet-like structure that may be the gaseous counterpart of the dust high-latitude jet observed in optical images. A CS rotating jet is also observed. Using the astrometry provided by continuum radio maps obtained in parallel, we conclude that there is no need to invoke of nongravitational forces acting on this comet, and provide an updated orbit. The radial extension of H2S is found to be consistent with direct release from the nucleus. SO displays an extended radial distribution. Assuming that SO2 is the parent of SO, the photodissociation rate of SO is measured to be 1.5 E-4 s-1 at 1 AU from the Sun. This is lower than most laboratory-based estimates and may suggest that SO is not solely produced by SO2 photolysis. From the observations of J(2-1) and J(5-4) CS lines, we deduce a CS photodissociation rate of 1 to 5 E-5 s-1. The photodissociation rate of CS2, the likely parent of CS, cannot be constrained due to insufficient resolution, but our data are consistent with published values. These observations illustrate the cometary science that will be performed with the future ALMA interferometer.Comment: Accepted for publication in Astronomy & Astrophysic

    Quantitative Analysis of the Interactions of Metal Complexes and Amphiphilic Systems: Calorimetric, Spectroscopic and Theoretical Aspects

    Get PDF
    Metals and metal-based compounds have many implications in biological systems. They are involved in cellular functions, employed in the formation of metal-based drugs and present as pollutants in aqueous systems, with toxic effects for living organisms. Amphiphilic molecules also play important roles in the above bio-related fields as models of membranes, nanocarriers for drug delivery and bioremediating agents. Despite the interest in complex systems involving both metal species and surfactant aggregates, there is still insufficient knowledge regarding the quantitative aspects at the basis of their binding interactions, which are crucial for extensive comprehension of their behavior in solution. Only a few papers have reported quantitative analyses of the thermodynamic, kinetic, speciation and binding features of metal-based compounds and amphiphilic aggregates, and no literature review has yet addressed the quantitative study of these complexes. Here, we summarize and critically discuss the recent contributions to the quantitative investigation of the interactions of metal-based systems with assemblies made of amphiphilic molecules by calorimetric, spectrophotometric and computational techniques, emphasizing the unique picture and parameters that such an analytical approach may provide, to support a deep understanding and beneficial use of these systems for several applications

    Submillimetric spectroscopic observations of volatiles in comet C/2004 Q2 (Machholz)

    Full text link
    We aim to determine the production rates of several parent and product volatiles and the 12C/13C isotopic carbon ratio in the long-period comet C/2004 Q2 (Machholz), which is likely to originate from the Oort Cloud. The line emission from several molecules in the coma was measured with high signal-to-noise ratio in January 2005 at heliocentric distance of 1.2 AU by means of high-resolution spectroscopic observations using the Submillimeter Telescope (SMT). We have obtained production rates of several volatiles (CH3OH, HCN, H13CN, HNC, H2CO, CO and CS) by comparing the observed and simulated line-integrated intensities. Furthermore, multiline observations of the CH3OH (7-6) series allow us to estimate the rotational temperature using the rotation diagram technique. We find that the CH3OH population distribution of the levels sampled by these lines can be described by a rotational temperature of 40 \pm 3 K. Derived mixing ratios relative to hydrogen cyanide are CO/CH3OH/H2CO/CS/HNC/H13CN/HCN = 30.9/24.6/4.8/0.57/0.031/0.013/1 assuming a pointing offset of 8" due to the uncertain ephemeris at the time of the observations and the telescope pointing error. The measured relative molecular abundances in C/2004 Q2 (Machholz) are between low- to typical values of those obtained in Oort Cloud comets, suggesting that it has visited the inner solar system previously and undergone thermal processing. The HNC/HCN abundance ratio of ~3.1% is comparable to that found in other comets, accounting for the dependence on the heliocentric distance, and could possibly be explained by ion-molecule chemical processes in the low-temperature atmosphere. From a tentative H13CN detection, the measured value of 97 \pm 30 for the H12CN/H13CN isotopologue pair is consistent with a telluric value.Comment: 14 pages with 11 figures, abridged abstrac

    A survey of volatile species in Oort cloud comets C/2001 Q4 (NEAT) and C/2002 T7 (LINEAR) at millimeter wavelengths

    Full text link
    The line emission in the coma was measured in the comets C/2001 Q4 (NEAT) and C/2002 T7 (LINEAR), that were observed on five consecutive nights, 7-11 May 2004, at heliocentric distances of 1.0 and 0.7 AU, respectively, by means of high-resolution spectroscopy using the 10-m Submillimeter Telescope (SMT). We present a search for six parent- and product-volatile species (HCN, H2CO, CO, CS, CH3OH, and HNC) in both comets. Multiline observations of the CH3OH J = 5-4 series allow us to estimate the rotational temperature using the rotation diagram technique. We derive rotational temperatures of 54(9) K for C/2001 Q4 (NEAT) and 119(34) K for C/2002 T7 (LINEAR) that are roughly consistent with observations of other comets at similar distances from the Sun. The gas production rates of material are computed using a spherically symmetric molecular excitation code that includes collisions between neutrals and electrons. We find an HCN production rate of 2.96(5)e26 molec.s-1 for comet C/2001 Q4 (NEAT), corresponding to a mixing ratio with respect to H2O of 1.12(2)e-3. The mean HCN production rate during the observing period is 4.54(10)e26 molec.s-1 for comet C/2002 T7 (LINEAR), which gives a Q_HCN/Q_H2O mixing ratio of 1.51(3)e-3. With systematically lower mixing ratios in comet C/2001 Q4 (NEAT), production rate ratios of the observed species with respect to H2O lie within the typical ranges of dynamically new comets in both objects. We find a relative low abundance of CO in C/2001 Q4 (NEAT) compared to the observed range in other comets based on millimeter/submillimeter observations, and a significant upper limit on the CO production in C/2002 T7 (LINEAR) is derived. Depletion of CO suggests partial evaporation from the surface layers during previous visits to the outer Solar System and agrees with previous measurements of dynamically new comets.Comment: 20 pages, 18 figures. Minor changes to match the published versio

    Complex organic molecules in comets C/2012 F6 (Lemmon) and C/2013 R1 (Lovejoy): detection of ethylene glycol and formamide

    Get PDF
    A spectral survey in the 1 mm wavelength range was undertaken in the long-period comets C/2012 F6 (Lemmon) and C/2013 R1 (Lovejoy) using the 30 m telescope of the Institut de radioastronomie millim\'etrique (IRAM) in April and November-December 2013. We report the detection of ethylene glycol (CH2_2OH)2_2 (aGg' conformer) and formamide (NH2_2CHO) in the two comets. The abundances relative to water of ethylene glycol and formamide are 0.2-0.3% and 0.02% in the two comets, similar to the values measured in comet C/1995 O1 (Hale-Bopp). We also report the detection of HCOOH and CH3_3CHO in comet C/2013 R1 (Lovejoy), and a search for other complex species (methyl formate, glycolaldehyde).Comment: Accepted for publication as a Letter in Astronomy and Astrophysic

    Adding Diversity to a Diruthenium Biscyclopentadienyl Scaffold via Alkyne Incorporation: Synthesis and Biological Studies

    Get PDF
    We report the synthesis and the assessment of the anticancer potential of two series of diruthenium biscyclopentadienyl carbonyl complexes. Novel dimetallacyclopentenone compounds (2-4) were obtained (45-92% yields) from the thermal reaction(PhCCPh exchange) of [Ru2Cp2(CO)(& mu;-CO){& mu;-& eta;(1):& eta;(3)-C(Ph)C(Ph)C(O)}], 1, with alkynes HCCR [R = C5H4FeCp (Fc),3-C6H4(Asp), 2-naphthyl; Cp = & eta;(5)-C5H5, Asp = OC(O)-2-C6H4C(O)Me]. Protonation of 1-3 by HBF4 afforded the corresponding & mu;-alkenyl derivatives 5-7, in 40-86% yields. All productswere characterized by IR and NMR spectroscopy; moreover, cyclic voltammetry(1, 2, 5, 7) andsingle-crystal X-ray diffraction (5, 7)analyses were performed on representative compounds. Complexes 5-7 revealed a cytotoxic activity comparableto that of cisplatin in A549 (lung adenocarcinoma), SW480 (colon adenocarcinoma),and ovarian (A2780) cancer cell lines, and 2, 5, 6, and 7 overcame cisplatin resistancein A2780cis cells. Complexes 2, 5, and 7 (but not the aspirin derivative 6) inducedan increase in intracellular ROS levels. Otherwise, 6 strongly stabilizes and elongates natural DNA (from calf thymus,CT-DNA), suggesting a possible intercalation binding mode, whereas 5 is less effective in binding CT-DNA, and 7 isineffective. This trend is reversed concerning RNA, and in particular, 7 is able to bind poly(rA)poly(rU) showing selectivity forthis nucleic acid. Complexes 5-7 caninteract with the albumin protein with a thermodynamic signature dominatedby hydrophobic interactions. Overall, we show that organometallicspecies based on the Ru2Cp2(CO)( x ) scaffold (x = 2, 3) are activeagainst cancer cells, with different incorporated fragments influencingthe interactions with nucleic acids and the production of ROS

    Role of the P2Y(13) Receptor in the Differentiation of Bone Marrow Stromal Cells into Osteoblasts and Adipocytes

    Get PDF
    Accumulating evidence indicates that extracellular nucleotides, signaling through purinergic receptors, play a significant role in bone remodeling. Mesenchymal stem cells (MSCs) express functional P2Y receptors whose expression level is regulated during osteoblast or adipocyte differentiation. P2Y13-deficient mice were previously shown to exhibit a decreased bone turnover associated with a reduction in the number of both osteoblasts and osteoclasts on the bone surfaces. We therefore examined whether P2Y13R activation was involved in the osteogenic differentiation of MSC. Our study demonstrated that ADP stimulation of P2Y13R+/+ (but not P2Y13R-/-) adherent bone marrow stromal cells (BMSCs) increased significantly the formation of alkaline phosphatase-colony-forming units (CFU-ALP) as well as the expression of osteoblastic markers (osterix, alkaline phosphatase, and collagen I) involved in the maturation of preosteoblasts into osteoblasts. The number of CFU-ALP obtained from P2Y13R-/- BMSC and the level of osteoblastic gene expression after osteogenic stimulation were strongly reduced compared to those obtained in wild-type cell cultures. In contrast, when P2Y13R-/- BMSCs were incubated in an adipogenic medium, the number of adipocytes generated and the level of adipogenic gene expression (PPARγ2 and Adipsin) were higher than those obtained in P2Y13R+/+ MSC. Interestingly, we observed a significant increase of the number of bone marrow adipocytes in tibia of P2Y13R-/- mice. In conclusion, our findings indicate that the P2Y13R plays an important role in the balance of osteoblast and adipocyte terminal differentiation of bone marrow progenitors. Therefore, the P2Y13 receptor can be considered as a new pharmacological target for the treatment of bone diseases like osteoporosis

    An upper limit for the water outgassing rate of the main-belt comet 176P/LINEAR observed with Herschel/HIFI

    Get PDF
    176P/LINEAR is a member of the new cometary class known as main-belt comets (MBCs). It displayed cometary activity shortly during its 2005 perihelion passage that may be driven by the sublimation of sub-surface ices. We have therefore searched for emission of the H2O 110-101 ground state rotational line at 557 GHz toward 176P/LINEAR with the Heterodyne Instrument for the Far Infrared (HIFI) on board the Herschel Space Observatory on UT 8.78 August 2011, about 40 days after its most recent perihelion passage, when the object was at a heliocentric distance of 2.58 AU. No H2O line emission was detected in our observations, from which we derive sensitive 3-sigma upper limits for the water production rate and column density of < 4e25 molec/s and of < 3e10 cm^{-2}, respectively. From the peak brightness measured during the object's active period in 2005, this upper limit is lower than predicted by the relation between production rates and visual magnitudes observed for a sample of comets by Jorda et al. (2008) at this heliocentric distance. Thus, 176P/LINEAR was likely less active at the time of our observation than during its previous perihelion passage. The retrieved upper limit is lower than most values derived for the H2O production rate from the spectroscopic search for CN emission in MBCs.Comment: 5 pages, 2 figures. Minor changes to match published versio

    Search for CO gas in Pluto, Centaurs and Kuiper Belt objects at radio wavelengths

    Get PDF
    We have searched for several rotational lines of CO in the Pluto-Charon system, Centaurs (Chiron, Pholus, Nessus, Asbolus, Chariklo and 1998 SG35) and Kuiper Belt objects (1994 TB, 1996 TL66, 1996 TO66, 1996 TP66 and 1998 WH4). The observations were performed with the 30 m telescope of the Institut de Radioastronomie Millimétrique for Pluto/Charon, and with the James Clerk Maxwell Telescope and Caltech Submillimeter Observatory for Centaurs and Kuiper Belt objects. A tentative 4.5-σ J(2-1) CO line is present in the Pluto/Charon spectrum, which requires further confirmation. Assuming that Charon does not contribute to the CO emission, an upper limit of 1.2% and 7% is obtained for the CO/N_2 mixing ratio in Pluto's atmosphere, using the atmospheric thermal structure derived from the Stansberry et al. (1994, Icarus 111, 503) and Strobel et al. (1996, Icarus 120, 266) models, respectively. These upper limits are more constraining (by more than a factor of 6) than the upper limits reported by Young et al. (2001, Icarus, in press) from near-IR spectroscopy. None of the Centaurs or Kuiper Belt objects (KBO) were detected in CO. The CO production rate upper limit obtained for Chiron (3-5 x 10^(27) mol s^(-1)) over 1998-2000 years is a factor of 10 lower than the CO production rate derived from the marginal CO detection obtained in June 1995 by Womack & Stern ([CITE], Astron. Vestnik 33, 216), using same modelling of CO emission. Upper limits obtained for other Centaurs are typically ~10^(28) mol s^(-1), and between 1 and 5 x 10^(28) mol s^(-1) for the best observed KBOs. The comparison between these upper limits and the CO outgassing rates of comet C/1995 O1 (Hale-Bopp) measured at large distances from the Sun shows that Centaurs and KBOs underwent significant CO-devolatilization since their formation

    The Composition of Comets

    Full text link
    This paper is the result of the International Cometary Workshop, held in Toulouse, France in April 2014, where the participants came together to assess our knowledge of comets prior to the ESA Rosetta Mission. In this paper, we look at the composition of the gas and dust from the comae of comets. With the gas, we cover the various taxonomic studies that have broken comets into groups and compare what is seen at all wavelengths. We also discuss what has been learned from mass spectrometers during flybys. A few caveats for our interpretation are discussed. With dust, much of our information comes from flybys. They include {\it in situ} analyses as well as samples returned to Earth for laboratory measurements. Remote sensing IR observations and polarimetry are also discussed. For both gas and dust, we discuss what instruments the Rosetta spacecraft and Philae lander will bring to bear to improve our understanding of comet 67P/Churyumov-Gerasimenko as "ground-truth" for our previous comprehensive studies. Finally, we summarize some of the initial Rosetta Mission findings.Comment: To appear in Space Science Review
    corecore