71 research outputs found

    Multi-decadal environmental change in the Barents Sea recorded by seal teeth

    Get PDF
    This work resulted from the ARISE project (NE/P006035/1, NE/P006000/1), part of the Changing Arctic Ocean programme, jointly funded by the UKRI Natural Environment Research Council (NERC). We thank Jim Ball for his help in the isotopic lab in Liverpool University. This work resulted from the ARISE project, part of the Changing Arctic Ocean programme.Multiple environmental forcings, such as warming and changes in ocean circulation and nutrient supply, are affecting the base of Arctic marine ecosystems, with cascading effects on the entire food web through bottom-up control. Stable nitrogen isotopes (δ15N) can be used to detect and unravel the impact of these forcings on this unique ecosystem, if the many processes that affect the δ15N values are constrained. Combining unique 60-year records from compound specific δ15N biomarkers on harp seal teeth alongside state-of-the-art ocean modelling, we observed a significant decline in the δ15N values at the base of the Barents Sea food web from 1951 to 2012. This strong and persistent decadal trend emerges due to the combination of anthropogenic atmospheric nitrogen deposition in the Atlantic, increased northward transport of Atlantic water through Arctic gateways and local feedbacks from increasing Arctic primary production. Our results suggest that the Arctic ecosystem has been responding to anthropogenically induced local and remote drivers, linked to changing ocean biology, chemistry and physics, for at least 60 years. Accounting for these trends in δ15N values at the base of the food web is essential to accurately detect ecosystem restructuring in this rapidly changing environment.Publisher PDFPeer reviewe

    Post-breeding at-sea movements of three central-place foragers in relation to submesoscale fronts in the Southern Ocean around Bouvetøya

    Get PDF
    At-sea behaviour of central-place foraging fur seals and penguins in the Southern Ocean is understudied during the latter stages of parental care and the subsequent pre-moulting period. This biologically important period is costly to investigate due to the risk (or certainty) of losing tracking instruments when the animals moult. Early in this period, parents must meet the increasing demands of larger, more mobile offspring that are still nutritionally dependent and then the parents must recover lost body condition prior to the onset of their annual moult. This study reports late-season, at-sea movement patterns of macaroni penguins, chinstrap penguins and adult female Antarctic fur seals from the subantarctic island Bouvetøya, in relation to remotely-sensed oceanographic features. Foraging trips differing significantly in direction and distance travelled compared to those performed earlier in the breeding season, coincide with the time when offspring would be expected to become independent. On these trips, macaroni penguins moved towards the Polar Front while chinstrap penguins and Antarctic fur seals moved southward. Individuals from all three species appeared to target submesoscale ocean features once they were presumed to have been released from the constraints of feeding their young and were able to travel greater distances from the colony.Norwegian Antarctic Research Expedition (NARE)http://journals.cambridge.org/action/displayJournal?jid=ANStm201

    At-sea behaviour of three krill predators breeding at Bouvetøya—Antarctic fur seals, macaroni penguins and chinstrap penguins

    Get PDF
    Interspecific competition is an important structuring element in marine ecosystems, especially in the Southern Ocean which offers few prey choices to comparatively large predator populations. We present the first simultaneous observations of at-sea behaviour and attendance patterns of 3 synchronously breeding, central place, krill foragers at Bouvetøya—a small, isolated, sub-Antarctic island in the South Atlantic. Time depth recorders and satellite transmitters were deployed during the austral summer of 2007/2008 on 47 lactating Antarctic fur seals Arctocephalus gazella (AFS) rearing pups and on 20 macaroni Eudyptes chrysolophus (MAC) and 30 chinstrap Pygoscelis antarctica penguins (CHIN) rearing chicks. All 3 species showed a strong preference for the west side of the island, and their foraging ranges overlapped markedly. Solar elevation influenced the timing of departures from, and arrivals to, the island with markedly different patterns between the seals and the penguins. Diving patterns also showed significant differences among the 3 species, with the frequency of diving being higher at night for the AFS, while both penguin species dove more frequently during the day. But a common, vertical diel pattern occurred in all 3 species, with shallow diving occurring at night and deep diving during the day, consistent with the vertical migration of krill. MACs targeted 2 depth layers for feeding, including a deep prey layer at ~70 m, which was not exploited by AFSs and CHINs. The results suggest that there is potential for competitive overlap among these 3 krill predators at Bouvetøya, but that it is reduced via both spatial (horizontal and vertical) and temporal partitioning of foraging areas.The Norwegian Antarctic Research Expedition (NARE) programmehttp://www.int-res.com/journals/meps/meps-home/hj2013ab201

    Post-breeding at-sea movements of three central-place foragers in relation to submesoscale fronts in the Southern Ocean around Bouvetøya

    Get PDF
    At-sea behaviour of central-place foraging fur seals and penguins in the Southern Ocean is understudied during the latter stages of parental care and the subsequent pre-moulting period. This biologically important period is costly to investigate due to the risk (or certainty) of losing tracking instruments when the animals moult. Early in this period, parents must meet the increasing demands of larger, more mobile offspring that are still nutritionally dependent and then the parents must recover lost body condition prior to the onset of their annual moult. This study reports late-season, at-sea movement patterns of macaroni penguins, chinstrap penguins and adult female Antarctic fur seals from the subantarctic island Bouvetøya, in relation to remotely-sensed oceanographic features. Foraging trips differing significantly in direction and distance travelled compared to those performed earlier in the breeding season, coincide with the time when offspring would be expected to become independent. On these trips, macaroni penguins moved towards the Polar Front while chinstrap penguins and Antarctic fur seals moved southward. Individuals from all three species appeared to target submesoscale ocean features once they were presumed to have been released from the constraints of feeding their young and were able to travel greater distances from the colony.Norwegian Antarctic Research Expedition (NARE)http://journals.cambridge.org/action/displayJournal?jid=ANStm201

    Spisateljica pomno građena kontinuiteta (Tena Štivičić, Nevidljivi (drame), Hena com, Zagreb 2015.)

    Get PDF
    <p><b>Hooded seal foraging trips during A) the post-breeding season and B) the post-molting season</b>. Blue lines represent adult males, red lines represent adult females and purple lines represent the pups. The green dot represents the mean deployment point.</p

    Identifying seasonal distribution patterns of fin whales across the Scotia Sea and the Antarctic Peninsula region using a novel approach combining habitat suitability models and ensemble learning methods

    Get PDF
    Following their near extirpation by industrial whaling of the 20th century, the population status of Southern Hemisphere fin whales (SHFW) remains unknown. Systematic surveys estimating fin whale abundance in the Southern Ocean are not yet available. Records of fin whale sightings have been collected by a variety of organisations over the past few decades, incorporating both opportunistic data and dedicated survey data. Together, these isolated data sets represent a potentially valuable source of information on the seasonality, distribution and abundance of SHFW. We compiled records across 40 years from the Antarctic Peninsula and Scotia Sea from multiple sources and used a novel approach combining ensemble learning and a maximum entropy model to estimate abundance and distribution of SHFW in this region. Our results show a seasonal distribution pattern with pronounced centres of distribution from January-March along the West Antarctic Peninsula. Our new approach allowed us to estimate abundance of SHFW for discrete areas from a mixed data set of mainly opportunistic presence only data

    Identifying seasonal distribution patterns of fin whales across the Scotia Sea and the Antarctic Peninsula region using a novel approach combining habitat suitability models and ensemble learning methods

    Get PDF
    Following their near extirpation by industrial whaling of the 20th century, the population status of Southern Hemisphere fin whales (SHFW) remains unknown. Systematic surveys estimating fin whale abundance in the Southern Ocean are not yet available. Records of fin whale sightings have been collected by a variety of organisations over the past few decades, incorporating both opportunistic data and dedicated survey data. Together, these isolated data sets represent a potentially valuable source of information on the seasonality, distribution and abundance of SHFW. We compiled records across 40 years from the Antarctic Peninsula and Scotia Sea from multiple sources and used a novel approach combining ensemble learning and a maximum entropy model to estimate abundance and distribution of SHFW in this region. Our results show a seasonal distribution pattern with pronounced centres of distribution from January-March along the West Antarctic Peninsula. Our new approach allowed us to estimate abundance of SHFW for discrete areas from a mixed data set of mainly opportunistic presence only data.publishedVersio

    Effects of Hydrographic Variability on the Spatial, Seasonal and Diel Diving Patterns of Southern Elephant Seals in the Eastern Weddell Sea

    Get PDF
    Weddell Sea hydrography and circulation is driven by influx of Circumpolar Deep Water (CDW) from the Antarctic Circumpolar Current (ACC) at its eastern margin. Entrainment and upwelling of this high-nutrient, oxygen-depleted water mass within the Weddell Gyre also supports the mesopelagic ecosystem within the gyre and the rich benthic community along the Antarctic shelf. We used Conductivity-Temperature-Depth Satellite Relay Data Loggers (CTD-SRDLs) to examine the importance of hydrographic variability, ice cover and season on the movements and diving behavior of southern elephant seals in the eastern Weddell Sea region during their overwinter feeding trips from Bouvetøya. We developed a model describing diving depth as a function of local time of day to account for diel variation in diving behavior. Seals feeding in pelagic ice-free waters during the summer months displayed clear diel variation, with daytime dives reaching 500-1500 m and night-time targeting of the subsurface temperature and salinity maxima characteristic of CDW around 150–300 meters. This pattern was especially clear in the Weddell Cold and Warm Regimes within the gyre, occurred in the ACC, but was absent at the Dronning Maud Land shelf region where seals fed benthically. Diel variation was almost absent in pelagic feeding areas covered by winter sea ice, where seals targeted deep layers around 500–700 meters. Thus, elephant seals appear to switch between feeding strategies when moving between oceanic regimes or in response to seasonal environmental conditions. While they are on the shelf, they exploit the locally-rich benthic ecosystem, while diel patterns in pelagic waters in summer are probably a response to strong vertical migration patterns within the copepod-based pelagic food web. Behavioral flexibility that permits such switching between different feeding strategies may have important consequences regarding the potential for southern elephant seals to adapt to variability or systematic changes in their environment resulting from climate change

    Marine mammal hotspots across the circumpolar Arctic

    Get PDF
    Aim: Identify hotspots and areas of high species richness for Arctic marine mammals. Location: Circumpolar Arctic. Methods: A total of 2115 biologging devices were deployed on marine mammals from 13 species in the Arctic from 2005 to 2019. Getis-Ord Gi* hotspots were calculated based on the number of individuals in grid cells for each species and for phyloge-netic groups (nine pinnipeds, three cetaceans, all species) and areas with high spe-cies richness were identified for summer (Jun-Nov), winter (Dec-May) and the entire year. Seasonal habitat differences among species’ hotspots were investigated using Principal Component Analysis. Results: Hotspots and areas with high species richness occurred within the Arctic continental-shelf seas and within the marginal ice zone, particularly in the “Arctic gateways” of the north Atlantic and Pacific oceans. Summer hotspots were generally found further north than winter hotspots, but there were exceptions to this pattern, including bowhead whales in the Greenland-Barents Seas and species with coastal distributions in Svalbard, Norway and East Greenland. Areas with high species rich-ness generally overlapped high-density hotspots. Large regional and seasonal dif-ferences in habitat features of hotspots were found among species but also within species from different regions. Gap analysis (discrepancy between hotspots and IUCN ranges) identified species and regions where more research is required. Main conclusions: This study identified important areas (and habitat types) for Arctic marine mammals using available biotelemetry data. The results herein serve as a benchmark to measure future distributional shifts. Expanded monitoring and teleme-try studies are needed on Arctic species to understand the impacts of climate change and concomitant ecosystem changes (synergistic effects of multiple stressors). While efforts should be made to fill knowledge gaps, including regional gaps and more com-plete sex and age coverage, hotspots identified herein can inform management ef-forts to mitigate the impacts of human activities and ecological changes, including creation of protected areas

    Identifying seasonal distribution patterns of fin whales across the Scotia Sea and the Antarctic Peninsula region using a novel approach combining habitat suitability models and ensemble learning methods

    Get PDF
    Following their near extirpation by industrial whaling of the 20th century, the population status of Southern Hemisphere fin whales (SHFW) remains unknown. Systematic surveys estimating fin whale abundance in the Southern Ocean are not yet available. Records of fin whale sightings have been collected by a variety of organisations over the past few decades, incorporating both opportunistic data and dedicated survey data. Together, these isolated data sets represent a potentially valuable source of information on the seasonality, distribution and abundance of SHFW. We compiled records across 40 years from the Antarctic Peninsula and Scotia Sea from multiple sources and used a novel approach combining ensemble learning and a maximum entropy model to estimate abundance and distribution of SHFW in this region. Our results show a seasonal distribution pattern with pronounced centres of distribution from January-March along the West Antarctic Peninsula. Our new approach allowed us to estimate abundance of SHFW for discrete areas from a mixed data set of mainly opportunistic presence only data
    corecore