12 research outputs found

    Antarctic krill Euphausia superba: spatial distribution, abundance, and management of fisheries in a changing climate

    Get PDF
    Antarctic krill Euphausia superba, a keystone species in the Southern Ocean, is highly relevant for studying effects of climate-related shifts on management systems. Krill provides a key link between primary producers and higher trophic levels and supports the largest regional fishery. Any major perturbation in the krill population would have severe ecological and economic ramifications. We review the literature to determine how climate change, in concert with other environmental changes, alters krill habitat, affects spatial distribution/abundance, and impacts fisheries management. Findings recently reported on the effects of climate change on krill distribution and abundance are inconsistent, however, raising questions regarding methods used to detect changes in density and biomass. One recent study reported a sharp decline in krill densities near their northern limit, accompanied by a poleward contraction in distribution in the Southwest Atlantic sector. Another recent study found no evidence of long-term decline in krill density or biomass and reported no evidence of a poleward shift in distribution. Moreover, with predicted decreases in phytoplankton production, vertical foraging migrations to the seabed may become more frequent, also impacting krill production and harvesting. Potentially cumulative impacts of climate change further compound the management challenge faced by CCAMLR, the organization responsible for conservation of Antarctic marine living resources: to detect changes in the abundance, distribution, and reproductive performance of krill and krill-dependent predator stocks and to respond to such change by adjusting its conservation measures. Based on CCAMLR reports and documents, we review the institutional framework, outline how climate change has been addressed within this organization, and examine the prospects for further advances toward ecosystem risk assessment and an adaptive management system.publishedVersio

    Krafttak for kysttorsken - Kunnskap for stedstilpasset gjenoppbygging av bestander, naturtyper og økosystem i Færder- og Ytre Hvaler nasjonalparker

    Get PDF
    Ytre Oslofjord har en unik kystnatur av svært stor verdi for både fastboende og tilreisende. Færder- og Ytre Hvaler nasjonalparker ligger side om side ytterst i fjorden, og skal sikre naturverdiene for kommende generasjoner. Nasjonalparkene har utformet egne forvaltningsplaner og -mål, som gjenspeiler et ønske om å legge best mulig til rette for at fiskearter, fugler, planter og insekter skal fortsette å trives innenfor parkenes grenser. Generelle mål for naturverdiene er at de skal opprettholdes med god økologisk funksjon, og et høyt biologisk mangfold.publishedVersio

    Marine mammal hotspots across the circumpolar Arctic

    Get PDF
    Aim: Identify hotspots and areas of high species richness for Arctic marine mammals. Location: Circumpolar Arctic. Methods: A total of 2115 biologging devices were deployed on marine mammals from 13 species in the Arctic from 2005 to 2019. Getis-Ord Gi* hotspots were calculated based on the number of individuals in grid cells for each species and for phyloge-netic groups (nine pinnipeds, three cetaceans, all species) and areas with high spe-cies richness were identified for summer (Jun-Nov), winter (Dec-May) and the entire year. Seasonal habitat differences among species’ hotspots were investigated using Principal Component Analysis. Results: Hotspots and areas with high species richness occurred within the Arctic continental-shelf seas and within the marginal ice zone, particularly in the “Arctic gateways” of the north Atlantic and Pacific oceans. Summer hotspots were generally found further north than winter hotspots, but there were exceptions to this pattern, including bowhead whales in the Greenland-Barents Seas and species with coastal distributions in Svalbard, Norway and East Greenland. Areas with high species rich-ness generally overlapped high-density hotspots. Large regional and seasonal dif-ferences in habitat features of hotspots were found among species but also within species from different regions. Gap analysis (discrepancy between hotspots and IUCN ranges) identified species and regions where more research is required. Main conclusions: This study identified important areas (and habitat types) for Arctic marine mammals using available biotelemetry data. The results herein serve as a benchmark to measure future distributional shifts. Expanded monitoring and teleme-try studies are needed on Arctic species to understand the impacts of climate change and concomitant ecosystem changes (synergistic effects of multiple stressors). While efforts should be made to fill knowledge gaps, including regional gaps and more com-plete sex and age coverage, hotspots identified herein can inform management ef-forts to mitigate the impacts of human activities and ecological changes, including creation of protected areas

    Instrumentation and handling effects on Antarctic fur seals (Arctocephalus gazella)

    Get PDF
    The use of biologging instruments has greatly improved our understanding of the behaviour, physiology and ecology of free-ranging marine mammals. However, handling wild animals and attaching instruments to streamlined bodies can cause stress and potentially influence behaviour and swimming/diving energetics. The goals of this study, undertaken on Bouvetøya, were (1) to determine if the first trip to sea after instrumentation is representative of subsequent trips in lactating Antarctic fur seals, to explore potential handling effects and assess possible biases in having multiple short-duration deployments (inflating N, using a limited number of tags) and (2) to evaluate potential effects of two different instrument combinations (SMRU satellite data relay loggers and very high frequency radio transmitters versus Wildlife Computers time–depth recorders and very high frequency radio transmitters) on trip durations, dive parameters, female body condition and pup growth. Handling did not appear to have any effects on the parameters studied; data from the first and second trips did not differ significantly. This implies that multiple short-term deployments are unlikely to result in biased data in this species. Instrument type did have measurable effects; time-at-sea was greater and pup growth was lower for pairs in which mothers carried bulkier instruments. This suggests that instrument streamlining is important to avoid negative impacts and that bulkier equipment should be deployed on lactating females with caution and only for short periods. The study highlights that instrument effects should be taken into account when comparing data from experiments collected using different equipment packages

    Numerical responses of saproxylic beetles to rapid increases in dead wood availability following geometrid moth outbreaks in sub-arctic mountain birch forest

    Get PDF
    -Saproxylic insects play an important part in decomposing dead wood in healthy forest ecosystems, but little is known about their role in the aftermath of large-scale forest mortality caused by pest insect outbreaks. We used window traps to study short-term changes in the abundance and community structure of saproxylic beetles following extensive mortality of mountain birch in sub-arctic northern Norway caused by an outbreak of geometrid moths. Three to five years after the outbreak, the proportion of obligate saproxylic individuals in the beetle community was roughly 10% higher in forest damaged by the outbreak than in undamaged forest. This was mainly due to two early-successional saproxylic beetle species. Facultative saproxylic beetles showed no consistent differences between damaged and undamaged forest. These findings would suggest a weak numerical response of the saproxylic beetle community to the dead wood left by the outbreak. We suggest that species-specific preferences for certain wood decay stages may limit the number of saproxylic species that respond numerically to an outbreak at a particular time, and that increases in responding species may be constrained by limitations to the amount of dead wood that can be exploited within a given timeframe (i.e. satiation effects). Low diversity of beetle species or slow development of larvae in our cold sub-arctic study region may also limit numerical responses. Our study suggests that saproxylic beetles, owing to weak numerical responses, may so far have played a minor role in decomposing the vast quantities of dead wood left by the moth outbreak

    Krafttak for kysttorsken - Kunnskap for stedstilpasset gjenoppbygging av bestander, naturtyper og økosystem i Færder- og Ytre Hvaler nasjonalparker

    No full text
    Ytre Oslofjord har en unik kystnatur av svært stor verdi for både fastboende og tilreisende. Færder- og Ytre Hvaler nasjonalparker ligger side om side ytterst i fjorden, og skal sikre naturverdiene for kommende generasjoner. Nasjonalparkene har utformet egne forvaltningsplaner og -mål, som gjenspeiler et ønske om å legge best mulig til rette for at fiskearter, fugler, planter og insekter skal fortsette å trives innenfor parkenes grenser. Generelle mål for naturverdiene er at de skal opprettholdes med god økologisk funksjon, og et høyt biologisk mangfold

    Marine mammal hotspots in the Greenland and Barents Seas

    Get PDF
    Environmental change and increasing levels of human activity are threats to marine mammals in the Arctic. Identifying marine mammal hotspots and areas of high species richness are essential to help guide management and conservation efforts. Herein, space use based on biotelemetric tracking devices deployed on 13 species (ringed seal Pusa hispida, bearded seal Erignathus barbatus, harbour seal Phoca vitulina, walrus Odobenus rosmarus, harp seal Pagophilus groenlandicus, hooded seal Cystophora cristata, polar bear Ursus maritimus, bowhead whale Balaena mysticetus, narwhal Monodon monoceros, white whale Delphinapterus leucas, blue whale Balaenoptera musculus, fin whale Balaenoptera physalus and humpback whale Megaptera novaeangliae; total = 585 individuals) in the Greenland and northern Barents Seas between 2005 and 2018 is reported. Getis-Ord Gi* hotspots were calculated for each species as well as all species combined, and areas of high species richness were identified for summer/autumn (Jun-Dec), winter/spring (Jan-May) and the entire year. The marginal ice zone (MIZ) of the Greenland Sea and northern Barents Sea, the waters surrounding the Svalbard Archipelago and a few Northeast Greenland coastal sites were identified as key marine mammal hotspots and areas of high species richness in this region. Individual hotspots identified areas important for most of the tagged animals, such as common resting, nursing, moulting and foraging areas. Location hotspots identified areas heavily used by segments of the tagged populations, including denning areas for polar bears and foraging areas. The hotspots identified herein are also important habitats for seabirds and fishes, and thus conservation and management measures targeting these regions would benefit multiple groups of Arctic animals

    Marine mammal hotspots in the Greenland and Barents Seas

    No full text
    Environmental change and increasing levels of human activity are threats to marine mammals in the Arctic. Identifying marine mammal hotspots and areas of high species richness are essential to help guide management and conservation efforts. Herein, space use based on biotelemetric tracking devices deployed on 13 species (ringed seal Pusa hispida, bearded seal Erignathus barbatus, harbour seal Phoca vitulina, walrus Odobenus rosmarus, harp seal Pagophilus groenlandicus, hooded seal Cystophora cristata, polar bear Ursus maritimus, bowhead whale Balaena mysticetus, narwhal Monodon monoceros, white whale Delphinapterus leucas, blue whale Balaenoptera musculus, fin whale Balaenoptera physalus and humpback whale Megaptera novaeangliae; total = 585 individuals) in the Greenland and northern Barents Seas between 2005 and 2018 is reported. Getis-Ord Gi* hotspots were calculated for each species as well as all species combined, and areas of high species richness were identified for summer/autumn (Jun-Dec), winter/spring (Jan-May) and the entire year. The marginal ice zone (MIZ) of the Greenland Sea and northern Barents Sea, the waters surrounding the Svalbard Archipelago and a few Northeast Greenland coastal sites were identified as key marine mammal hotspots and areas of high species richness in this region. Individual hotspots identified areas important for most of the tagged animals, such as common resting, nursing, moulting and foraging areas. Location hotspots identified areas heavily used by segments of the tagged populations, including denning areas for polar bears and foraging areas. The hotspots identified herein are also important habitats for seabirds and fishes, and thus conservation and management measures targeting these regions would benefit multiple groups of Arctic animals
    corecore