5 research outputs found

    Genome-wide analysis identifies genetic effects on reproductive success and ongoing natural selection at the FADS locus

    No full text
    Identifying genetic determinants of reproductive success may highlight mechanisms underlying fertility and also identify alleles under present-day selection. Using data in 785,604 individuals of European ancestry, we identify 43 genomic loci associated with either number of children ever born (NEB) or childlessness. These loci span diverse aspects of reproductive biology across the life course, including puberty timing, age at first birth, sex hormone regulation and age at menopause. Missense alleles in ARHGAP27 were associated with increased NEB but reduced reproductive lifespan, suggesting a trade-off between reproductive ageing and intensity. As NEB is one component of evolutionary fitness, our identified associations indicate loci under present-day natural selection. Accordingly, we find that NEB-increasing alleles have increased in frequency over the past two generations. Furthermore, integration with data from ancient selection scans identifies a unique example of an allele—FADS1/2 gene locus—that has been under selection for thousands of years and remains under selection today. Collectively, our findings demonstrate that diverse biological mechanisms contribute to reproductive success, implicating both neuro-endocrine and behavioural influences

    Evolutionary and functional impact of common polymorphic inversions in the human genome

    Get PDF
    Inversions are one type of structural variants linked to phenotypic differences and adaptation in multiple organisms. However, there is still very little information about polymorphic inversions in the human genome due to the difficulty of their detection. Here, we develop a new high-throughput genotyping method based on probe hybridization and amplification, and we perform a complete study of 45 common human inversions of 0.1-415 kb. Most inversions promoted by homologous recombination occur recurrently in humans and great apes and they are not tagged by SNPs. Furthermore, there is an enrichment of inversions showing signatures of positive or balancing selection, diverse functional effects, such as gene disruption and gene-expression changes, or association with phenotypic traits. Therefore, our results indicate that the genome is more dynamic than previously thought and that human inversions have important functional and evolutionary consequences, making possible to determine for the first time their contribution to complex traits.This work was supported by research grants ERC Starting Grant 243212 (INVFEST) from the European Research Council under the European Union Seventh Research Framework Programme (FP7), BFU2013-42649-P and BFU2016-77244-R funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU), and 2014-SGR-1346 and 2017-SGR-1379 from the Generalitat de Catalunya (Spain) to M.C., a PIF PhD fellowship from the Universitat Autònoma de Barcelona (Spain) to C.G.D., a La Caixa Doctoral fellowship to J.L.J., and a FPI PhD fellowship from the Ministerio de Economía y Competitividad (Spain) to M.O. and I.N. M.G.V. was supported in part by POCI-01-0145-FEDER-006821 funded through the Operational Programme for Competitiveness Factors (COMPETE, EU) and UID/BIA/50027/2013 from the Foundation for Science and Technology (FCT, Portugal)

    Host–parasite co-evolution and its genomic signature

    No full text
    Studies in diverse biological systems have indicated that host-parasite co-evolution is responsible for the extraordinary genetic diversity seen in some genomic regions, such as major histocompatibility (MHC) genes in jawed vertebrates and resistance genes in plants. This diversity is believed to evolve under balancing selection on hosts by parasites. However, the mechanisms that link the genomic signatures in these regions to the underlying co-evolutionary process are only slowly emerging. We still lack a clear picture of the co-evolutionary concepts and of the genetic basis of the co-evolving phenotypic traits in the interacting antagonists. Emerging genomic tools that provide new options for identifying underlying genes will contribute to a fuller understanding of the co-evolutionary process
    corecore