97 research outputs found

    Cooperative interactions between p53 and NFkappaB enhance cell plasticity.

    Get PDF
    The p53 and NFkappaB sequence-specific transcription factors play crucial roles in cell proliferation and survival with critical, even if typically opposite, effects on cancer progression. To investigate a possible crosstalk between p53 and NFkappaB driven by chemotherapy-induced responses in the context of an inflammatory microenvironment, we performed a proof of concept study using MCF7 cells. Transcriptome analyses upon single or combined treatments with doxorubicin (Doxo, 1.5muM) and the NFkappaB inducer TNF-alpha (TNFalpha, 5ng/ml) revealed 432 up-regulated (log2 FC> 2), and 390 repressed genes (log2 FC< -2) for the Doxo+TNFalpha treatment. 239 up-regulated and 161 repressed genes were synergistically regulated by the double treatment. Annotation and pathway analyses of Doxo+TNFalpha selectively up-regulated genes indicated strong enrichment for cell migration terms. A panel of genes was examined by qPCR coupled to p53 activation by Doxo, 5-Fluoruracil and Nutlin-3a, or to p53 or NFkappaB inhibition. Transcriptome data were confirmed for 12 of 15 selected genes and seven (PLK3, LAMP3, ETV7, UNC5B, NTN1, DUSP5, SNAI1) were synergistically up-regulated after Doxo+TNFalpha and dependent both on p53 and NFkappaB. Migration assays consistently showed an increase in motility for MCF7 cells upon Doxo+TNFalpha. A signature of 29 Doxo+TNFalpha highly synergistic genes exhibited prognostic value for luminal breast cancer patients, with adverse outcome correlating with higher relative expression. We propose that the crosstalk between p53 and NFkappaB can lead to the activation of specific gene expression programs that may impact on cancer phenotypes and potentially modify the efficacy of cancer therapy

    Quantitative Analysis of NF-ÎşB Transactivation Specificity Using a Yeast-Based Functional Assay

    Get PDF
    The NF-κB transcription factor family plays a central role in innate immunity and inflammation processes and is frequently dysregulated in cancer. We developed an NF-κB functional assay in yeast to investigate the following issues: transactivation specificity of NF-κB proteins acting as homodimers or heterodimers; correlation between transactivation capacity and in vitro DNA binding measurements; impact of co-expressed interacting proteins or of small molecule inhibitors on NF-κB-dependent transactivation. Full-length p65 and p50 cDNAs were cloned into centromeric expression vectors under inducible GAL1 promoter in order to vary their expression levels. Since p50 lacks a transactivation domain (TAD), a chimeric construct containing the TAD derived from p65 was also generated (p50TAD) to address its binding and transactivation potential. The p50TAD and p65 had distinct transactivation specificities towards seventeen different κB response elements (κB-REs) where single nucleotide changes could greatly impact transactivation. For four κB-REs, results in yeast were predictive of transactivation potential measured in the human MCF7 cell lines treated with the NF-κB activator TNFα. Transactivation results in yeast correlated only partially with in vitro measured DNA binding affinities, suggesting that features other than strength of interaction with naked DNA affect transactivation, although factors such as chromatin context are kept constant in our isogenic yeast assay. The small molecules BAY11-7082 and ethyl-pyruvate as well as expressed IkBα protein acted as NF-κB inhibitors in yeast, more strongly towards p65. Thus, the yeast-based system can recapitulate NF-κB features found in human cells, thereby providing opportunities to address various NF-κB functions, interactions and chemical modulators

    The growing relevance of cap-independent translation initiation in cancer-related genes

    Get PDF
    Twomainmechanisms for eukaryotic initiation of protein synthesis have been described – the canonical cap-dependent and the alternative cap-independent. They mainly differ in their requirement for 7-methylguanosine cap at 5’ end of mRNAmolecules to initiate translation. In cap-independent translation initiation, an element within 5’ untranslated region (5’UTR) ofmRNA, defined internal ribosome entry site (IRES), recruits 40S ribosomal subunit directly or close to the start codon without the need for the 5’ cap. Some cellular mRNAs – including those encoding for a number of growth factors, oncogenes, receptors, survival proteins, transcription and translation factors – contain IRES elements within their 5’ UTR what may allow them to be translated under different physiological or stress conditions (e.g., amino acid starvation, apoptosis, growth arrest, heat shock,mitosis, radiation) when global cap-dependent protein synthesis is suppressed. IRES-dependent translationmay escape the control of checkpoints present in cap-dependent regulation causing improper protein synthesis that can lead to cell apoptosis or disease. A growing number of cancer-related genes have been reported whose translation initiation depends on the presence of IRES element in their mRNA. These findings make the quest for discovering and testing new putative cellular IRESes even more meaningful. A deeper understanding of the role of IRES-dependent translation initiation in cancer etiology could ultimately give us a novel targets for cancer therapy

    Motor contagion during human-human and human-robot interaction.

    Get PDF
    Motor resonance mechanisms are known to affect humans' ability to interact with others, yielding the kind of "mutual understanding" that is the basis of social interaction. However, it remains unclear how the partner's action features combine or compete to promote or prevent motor resonance during interaction. To clarify this point, the present study tested whether and how the nature of the visual stimulus and the properties of the observed actions influence observer's motor response, being motor contagion one of the behavioral manifestations of motor resonance. Participants observed a humanoid robot and a human agent move their hands into a pre-specified final position or put an object into a container at various velocities. Their movements, both in the object- and non-object- directed conditions, were characterized by either a smooth/curvilinear or a jerky/segmented trajectory. These trajectories were covered with biological or non-biological kinematics (the latter only by the humanoid robot). After action observation, participants were requested to either reach the indicated final position or to transport a similar object into another container. Results showed that motor contagion appeared for both the interactive partner except when the humanoid robot violated the biological laws of motion. These findings suggest that the observer may transiently match his/her own motor repertoire to that of the observed agent. This matching might mediate the activation of motor resonance, and modulate the spontaneity and the pleasantness of the interaction, whatever the nature of the communication partner

    Reactivation of wild-type and mutant p53 by tryptophanolderived oxazoloisoindolinone SLMP53-1:a novel anticancer small-molecule

    Get PDF
    Restoration of the p53 pathway, namely by reactivation of mutant (mut) p53, represents a valuable anticancer strategy. Herein, we report the identification of the enantiopure tryptophanol-derived oxazoloisoindolinone SLMP53-1 as a novel reactivator of wild-type (wt) and mut p53, using a yeast-based screening strategy. SLMP53-1 has a p53-dependent anti-proliferative activity in human wt and mut p53R280K-expressing tumor cells. Additionally, SLMP53-1 enhances p53 transcriptional activity and restores wt-like DNA binding ability to mut p53R280K. In wt/mut p53-expressing tumor cells, SLMP53-1 triggers p53 transcription-dependent and mitochondrial apoptotic pathways involving BAX, and wt/mut p53 mitochondrial translocation. SLMP53-1 inhibits the migration of wt/mut p53-expressing tumor cells, and it shows promising p53-dependent synergistic effects with conventional chemotherapeutics. In xenograft mice models, SLMP53-1 inhibits the growth of wt/mut p53-expressing tumors, but not of p53-null tumors, without apparent toxicity. Collectively, besides the potential use of SLMP53-1 as anticancer drug, the tryptophanol-derived oxazoloisoindolinone scaffold represents a promissing starting point for the development of effective p53-reactivating drugs

    P63 modulates the expression of the WDFY2 gene which is implicated in cancer regulation and limb development

    Get PDF
    TP63 is a member of the TP53 gene family, sharing a common gene structure that produces two groups of mRNAs\u2019 encoding proteins with different N-terminal regions ( 06N and TA isoforms); both transcripts are also subjected to alternative splicing mechanisms at C-terminus, generating a variety of isoforms. p63 is a master regulator of epidermal development and homoeostasis as well as an important player in tumorigenesis and cancer progression with both oncogenic and tumour suppressive roles. A number of studies have aimed at the identification of p63 target genes, allowing the dissection of the molecular pathways orchestrated by the different isoforms. In the present study we investigated in more detail the p63 responsiveness of the WDFY2 (WD repeat and FYVE domain containing 2) gene, encoding for an endosomal protein identified as a binding partner of the PI-3K/AKT signalling pathway. We showed that overexpression of different p63 isoforms was able to induce WDFY2 expression in TP53-null cells. The p63-dependent transcriptional activation was associated with specific response elements (REs) that have been identified by a bioinformatics tool and validated by yeast- and mammal-based assays. Interestingly, to confirm that WDFY2 belongs to the p63 network of cancer regulation, we analysed the impact of WDFY2 alterations, by showing its frequent deletion in different types of tumours and suggesting its expression level as a prognostic biomarker. Lastly, we identified a chromosomal translocation involving the WDFY2 locus in a patient affected by a rare congenital limb anomaly, indicating WDFY2 as a possible susceptibility gene placed downstream p63 in the network of limb development

    Discovery of a new small-molecule inhibitor of p53–MDM2 interaction using a yeast-based approach

    Get PDF
    The virtual screening of a library of xanthone derivatives led us to the identification of potential novel MDM2 ligands. The activity of these compounds as inhibitors of p53–MDM2 interaction was investigated using a yeast phenotypic assay, herein developed for the initial screening. Using this approach, in association with a yeast p53 transactivation assay, the pyranoxanthone (3,4-dihydro-12- hydroxy-2,2-dimethyl-2H,6H-pyrano[3,2-b]xanthen-6-one) (1) was identified as a putative small molecule inhibitor of p53–MDM2 interaction. The activity of the pyranoxanthone 1 as inhibitor of p53–MDM2 interaction was further investigated in human tumor cells with wild-type p53 and overexpressed MDM2. Notably, the pyranoxanthone 1 mimicked the activity of known p53 activators, leading to p53 stabilization and activation of p53- dependent transcriptional activity. Additionally, it led to increased protein levels of p21 and Bax, and to caspase-7 cleavage. By computational docking studies, it was predicted that, like nutlin-3a, a known small-molecule inhibitor of p53–MDM2 interaction, pyranoxanthone 1 binds to the p53-binding site of MDM2. Overall, in this work, a novel small-molecule inhibitor of p53–MDM2 interaction with a xanthone scaffold was identified for the first time. Besides its potential use as molecular probe and possible lead to develop anticancer agents, the pyranoxanthone 1 will pave the way for the structure-based design of a new class of p53–MDM2 inhibitors.info:eu-repo/semantics/publishedVersio

    ETV7 reduces inflammatory responses in breast cancer cells by repressing the TNFR1/NF-ÎşB axis

    Get PDF
    : The transcription factor ETV7 is an oncoprotein that is up-regulated in all breast cancer (BC) types. We have recently demonstrated that ETV7 promoted breast cancer progression by increasing cancer cell proliferation and stemness and was also involved in the development of chemo- and radio-resistance. However, the roles of ETV7 in breast cancer inflammation have yet to be studied. Gene ontology analysis previously performed on BC cells stably over-expressing ETV7 demonstrated that ETV7 was involved in the suppression of innate immune and inflammatory responses. To better decipher the involvement of ETV7 in these signaling pathways, in this study, we identified TNFRSF1A, encoding for the main receptor of TNF-α, TNFR1, as one of the genes down-regulated by ETV7. We demonstrated that ETV7 directly binds to the intron I of this gene, and we showed that the ETV7-mediated down-regulation of TNFRSF1A reduced the activation of NF-κB signaling. Furthermore, in this study, we unveiled a potential crosstalk between ETV7 and STAT3, another master regulator of inflammation. While it is known that STAT3 directly up-regulates the expression of TNFRSF1A, here we demonstrated that ETV7 reduces the ability of STAT3 to bind to the TNFRSF1A gene via a competitive mechanism, recruiting repressive chromatin remodelers, which results in the repression of its transcription. The inverse correlation between ETV7 and TNFRSF1A was confirmed also in different cohorts of BC patients. These results suggest that ETV7 can reduce the inflammatory responses in breast cancer through the down-regulation of TNFRSF1A

    Limonium duriusculum (de Girard) Kuntze Exhibits Anti-inflammatory Effect Via NF-ÎşB Pathway Modulation

    Get PDF
    HIGHLIGHTS L. duriusculum n-BuOH extract reduces inflammatory responses both in vitro and in vivo. L. duriusculum n-BuOH extract inhibits NF-κB-dependent transcriptional responses. L. duriusculum n-BuOH extract decreases the expression of TNF-α and IL-6 genes
    • …
    corecore