140 research outputs found

    A human B-cell interactome identifies MYB and FOXM1 as master regulators of proliferation in germinal centers

    Get PDF
    Assembly of a mixed interaction network specific to human B cells.Identification and validation of master regulators of germinal center reaction.MYB and FOXM1 are synergistic master regulators of proliferation in germinal center B cells and control a new protein complex involving replication and mitotic-related genes

    NK-cell and T-cell functions in patients with breast cancer: effects of surgery and adjuvant chemo- and radiotherapy

    Get PDF
    Breast cancer is globally the most common malignancy in women. Her2-targeted monoclonal antibodies are established treatment modalities, and vaccines are in late-stage clinical testing in patients with breast cancer and known to promote tumour-killing through mechanisms like antibody-dependent cellular cytotoxicity. It is therefore increasingly important to study immunological consequences of conventional treatment strategies. In this study, functional tests and four-colour flow cytometry were used to detect natural killer (NK)-cell functions and receptors as well as T-cell signal transduction molecules and intracellular cytokines in preoperative breast cancer patients, and patients who had received adjuvant radiotherapy or adjuvant combined chemo-radiotherapy as well as in age-matched healthy controls. The absolute number of NK cells, the density of NK receptors as well as in vitro quantitation of functional NK cytotoxicity were significantly higher in preoperative patients than the post-treatments group and controls. A similar pattern was seen with regard to T-cell signalling molecules, and preoperative patients produced significantly higher amounts of cytokines in NK and T cells compared to other groups. The results indicate that functions of NK and T cells are well preserved before surgery but decrease following adjuvant therapy, which may speak in favour of early rather than late use of immunotherapeutic agents such as trastuzumab that may depend on intact immune effector functions

    Rapid Regulatory T-Cell Response Prevents Cytokine Storm in CD28 Superagonist Treated Mice

    Get PDF
    Superagonistic CD28-specific monoclonal antibodies (CD28SA) are highly effective activators of regulatory T-cells (Treg cells) in rats, but a first-in-man trial of the human CD28SA TGN1412 resulted in an unexpected cytokine release syndrome. Using a novel mouse anti-mouse CD28SA, we re-investigate the relationship between Treg activation and systemic cytokine release. Treg activation by CD28SA was highly efficient but depended on paracrine IL-2 from CD28SA-stimulated conventional T-cells. Systemic cytokine levels were innocuous, but depletion of Treg cells prior to CD28SA stimulation led to systemic release of proinflammatory cytokines, indicating that in rodents, Treg cells effectively suppress the inflammatory response. Since the human volunteers of the TGN1412 study were not protected by this mechanism, we also tested whether corticosteroid prophylaxis would be compatible with CD28SA induced Treg activation. We show that neither the expansion nor the functional activation of Treg cells is affected by high-dose dexamethasone sufficient to control systemic cytokine release. Our findings warn that preclinical testing of activating biologicals in rodents may miss cytokine release syndromes due to the rapid and efficacious response of the rodent Treg compartment, and suggest that polyclonal Treg activation is feasible in the presence of antiphlogistic corticosteroid prophylaxis

    Common Gamma Chain Cytokines Promote Rapid In Vitro Expansion of Allo-Specific Human CD8+ Suppressor T Cells

    Get PDF
    Human CD8+ regulatory T cells, particularly the CD8+CD28− T suppressor cells, have emerged as an important modulator of alloimmunity. Understanding the conditions under which these cells are induced and/or expanded would greatly facilitate their application in future clinical trials. In the current study, we develop a novel strategy that combines common gamma chain (γc) cytokines IL-2, IL-7 and IL-15 and donor antigen presenting cells (APCs) to stimulate full HLA-mismatched allogeneic human CD8+ T cells which results in significant expansions of donor-specific CD8+CD28− T suppressor cells in vitro. The expanded CD8+CD28− T cells exhibit increased expressions of CTLA-4, FoxP3, and CD25, while down-regulate expressions of CD56, CD57, CD127, and perforin. Furthermore, these cells suppress proliferation of CD4+ T cells in a contact-dependent and cytokine-independent manner. Interestingly, the specificity of suppression is restricted by the donor HLA class I antigens but promiscuous to HLA class II antigens, providing a potential mechanism for linked suppression. Taken together, our results demonstrate a novel role for common γc cytokines in combination with donor APCs in the expansion of donor-specific CD8+CD28− T suppressor cells, and represent a robust strategy for in vitro generation of such cells for adoptive cellular immunotherapy in transplantation

    Key Role of the GITR/GITRLigand Pathway in the Development of Murine Autoimmune Diabetes: A Potential Therapeutic Target

    Get PDF
    BACKGROUND: The cross-talk between pathogenic T lymphocytes and regulatory T cells (Tregs) plays a major role in the progression of autoimmune diseases. Our objective is to identify molecules and/or pathways involved in this interaction and representing potential targets for innovative therapies. Glucocorticoid-induced tumor necrosis factor receptor (GITR) and its ligand are key players in the T effector/Treg interaction. GITR is expressed at low levels on resting T cells and is significantly up-regulated upon activation. Constitutive high expression of GITR is detected only on Tregs. GITR interacts with its ligand mainly expressed on antigen presenting cells and endothelial cells. It has been suggested that GITR triggering activates effector T lymphocytes while inhibiting Tregs thus contributing to the amplification of immune responses. In this study, we examined the role of GITR/GITRLigand interaction in the progression of autoimmune diabetes. METHODS AND FINDINGS: Treatment of 10-day-old non-obese diabetic (NOD) mice, which spontaneously develop diabetes, with an agonistic GITR-specific antibody induced a significant acceleration of disease onset (80% at 12 weeks of age). This activity was not due to a decline in the numbers or functional capacity of CD4(+)CD25(+)Foxp3(+) Tregs but rather to a major activation of 'diabetogenic' T cells. This conclusion was supported by results showing that anti-GITR antibody exacerbates diabetes also in CD28(-/-) NOD mice, which lack Tregs. In addition, treatment of NOD mice, infused with the diabetogenic CD4(+)BDC2.5 T cell clone, with GITR-specific antibody substantially increased their migration, proliferation and activation within the pancreatic islets and draining lymph nodes. As a mirror image, blockade of the GITR/GITRLigand pathway using a neutralizing GITRLigand-specific antibody significantly protected from diabetes even at late stages of disease progression. Experiments using the BDC2.5 T cell transfer model suggested that the GITRLigand antibody acted by limiting the homing and proliferation of pathogenic T cells in pancreatic lymph nodes. CONCLUSION: GITR triggering plays an important costimulatory role on diabetogenic T cells contributing to the development of autoimmune responses. Therefore, blockade of the GITR/GITRLigand pathway appears as a novel promising clinically oriented strategy as GITRLigand-specific antibody applied at an advanced stage of disease progression can prevent overt diabetes

    Impact of Dietary Gluten on Regulatory T Cells and Th17 Cells in BALB/c Mice

    Get PDF
    Dietary gluten influences the development of type 1 diabetes (T1D) and a gluten-free (GF) diet has a protective effect on the development of T1D. Gluten may influence T1D due to its direct effect on intestinal immunity; however, these mechanisms have not been adequately studied. We studied the effect of a GF diet compared to a gluten-containing standard (STD) diet on selected T cell subsets, associated with regulatory functions as well as proinflammatory Th17 cells, in BALB/c mice. Furthermore, we assessed diet-induced changes in the expression of various T cell markers, and determined if changes were confined to intestinal or non-intestinal lymphoid compartments. The gluten-containing STD diet led to a significantly decreased proportion of γδ T cells in all lymphoid compartments studied, although an increase was detected in some γδ T cell subsets (CD8+, CD103+). Further, it decreased the proportion of CD4+CD62L+ T cells in Peyer's patches. Interestingly, no diet-induced changes were found among CD4+Foxp3+ T cells or CD3+CD49b+cells (NKT cells) and CD3−CD49b+ (NK) cells. Mice fed the STD diet showed increased proportions of CD4+CD45RBhigh+ and CD103+ T cells and a lower proportion of CD4+CD45RBlow+ T cells in both mucosal and non-mucosal compartments. The Th17 cell population, associated with the development of autoimmunity, was substantially increased in pancreatic lymph nodes of mice fed the STD diet. Collectively, our data indicate that dietary gluten influences multiple regulatory T cell subsets as well as Th17 cells in mucosal lymphoid tissue while fewer differences were observed in non-mucosal lymphoid compartments

    A microRNA profile of human CD8(+) regulatory T cells and characterization of the effects of microRNAs on Treg cell-associated genes.

    Get PDF
    Recently, regulatory T (Treg) cells have gained interest in the fields of immunopathology, transplantation and oncoimmunology. Here, we investigated the microRNA expression profile of human natural CD8(+)CD25(+) Treg cells and the impact of microRNAs on molecules associated with immune regulation. We purified human natural CD8(+) Treg cells and assessed the expression of FOXP3 and CTLA-4 by flow cytometry. We have also tested the ex vivo suppressive capacity of these cells in mixed leukocyte reactions. Using TaqMan low-density arrays and microRNA qPCR for validation, we could identify a microRNA 'signature' for CD8(+)CD25(+)FOXP3(+)CTLA-4(+) natural Treg cells. We used the 'TargetScan' and 'miRBase' bioinformatics programs to identify potential target sites for these microRNAs in the 3'-UTR of important Treg cell-associated genes. The human CD8(+)CD25(+) natural Treg cell microRNA signature includes 10 differentially expressed microRNAs. We demonstrated an impact of this signature on Treg cell biology by showing specific regulation of FOXP3, CTLA-4 and GARP gene expression by microRNA using site-directed mutagenesis and a dual-luciferase reporter assay. Furthermore, we used microRNA transduction experiments to demonstrate that these microRNAs impacted their target genes in human primary Treg cells ex vivo. We are examining the biological relevance of this 'signature' by studying its impact on other important Treg cell-associated genes. These efforts could result in a better understanding of the regulation of Treg cell function and might reveal new targets for immunotherapy in immune disorders and cancer

    FOXP3 Expression Is Upregulated in CD4+T Cells in Progressive HIV-1 Infection and Is a Marker of Disease Severity

    Get PDF
    Understanding the role of different classes of T cells during HIV infection is critical to determining which responses correlate with protective immunity. To date, it is unclear whether alterations in regulatory T cell (Treg) function are contributory to progression of HIV infection.FOXP3 expression was measured by both qRT-PCR and by flow cytometry in HIV-infected individuals and uninfected controls together with expression of CD25, GITR and CTLA-4. Cultured peripheral blood mononuclear cells were stimulated with anti-CD3 and cell proliferation was assessed by CFSE dilution.HIV infected individuals had significantly higher frequencies of CD4(+)FOXP3(+) T cells (median of 8.11%; range 1.33%-26.27%) than healthy controls (median 3.72%; range 1.3-7.5%; P = 0.002), despite having lower absolute counts of CD4(+)FOXP3(+) T cells. There was a significant positive correlation between the frequency of CD4(+)FOXP3(+) T cells and viral load (rho = 0.593 P = 0.003) and a significant negative correlation with CD4 count (rho = -0.423 P = 0.044). 48% of our patients had CD4 counts below 200 cells/microl and these patients showed a marked elevation of FOXP3 percentage (median 10% range 4.07%-26.27%). Assessing the mechanism of increased FOXP3 frequency, we found that the high FOXP3 levels noted in HIV infected individuals dropped rapidly in unstimulated culture conditions but could be restimulated by T cell receptor stimulation. This suggests that the high FOXP3 expression in HIV infected patients is likely due to FOXP3 upregulation by individual CD4(+) T cells following antigenic or other stimulation.FOXP3 expression in the CD4(+) T cell population is a marker of severity of HIV infection and a potential prognostic marker of disease progression
    corecore