1,653 research outputs found

    Casimir energy in the gauge/gravity description of Bjorken flow?

    Full text link
    In the AdS/CFT description of four-dimensional QCD matter undergoing Bjorken expansion, does the holographic energy-momentum tensor contain a Casimir-type contribution that should not be attributed to thermal matter? When the bulk isometry ansatz that yielded such a Casimir term for (1+1)-dimensional boundary matter is generalised to a four-dimensional boundary, we show that a Casimir term does not arise, owing to singularities in the five-dimensional bulk solution. The geometric reasons are traced to a difference between the isometries of AdS_3 and AdS_{d+1} for d>=3.Comment: 14 pages. v3: Relationship to the work in [3] clarified. Typos corrected. Published versio

    Neutrino oscillations in a Robertson-Walker Universe with space time foam

    Full text link
    In Phys. Rev. D77 (2008) 105001, we have studied decoherence models for flavour oscillations in four-dimensional stochastically fluctuating space times and discussed briefly the sensitivity of current terrestrial and astrophysical neutrino experiments to such models. In this addendum we extend these results to incorporate the effects due to the expansion of the Universe, so that our analysis can be useful in studies of extragalactic high-energy neutrinos, such as those coming from Gamma Ray Bursts at cosmological distances. Unfortunately for some microscopic models of foam, constructed in the string theory framework, we arrive at pessimistic conclusions about the detectability of the decoherence effects via flavour oscillation meaurements.Comment: Addendum to Phys. Rev. D77 (2008) 10500

    Towards the solution of the relativistic gravitational radiation reaction problem for binary black holes

    Get PDF
    Here we present the results of applying the generalized Riemann zeta-function regularization method to the gravitational radiation reaction problem. We analyze in detail the headon collision of two nonspinning black holes with extreme mass ratio. The resulting reaction force on the smaller hole is repulsive. We discuss the possible extensions of these method to generic orbits and spinning black holes. The determination of corrected trajectories allows to add second perturbative corrections with the consequent increase in the accuracy of computed waveforms.Comment: Contribution to the Proceedings of the 3rd LISA Symposiu

    Bouncing inflation in nonlinear R2+R4R^2+R^4 gravitational model

    Get PDF
    We study a gravitational model with curvature-squared R2R^2 and curvature-quartic R4R^4 nonlinearities. The effective scalar degree of freedom Ï•\phi (scalaron) has a multi-valued potential U(Ï•)U(\phi) consisting of a number of branches. These branches are fitted with each other in the branching and monotonic points. In the case of four-dimensional space-time, we show that the monotonic points are penetrable for scalaron while in the vicinity of the branching points scalaron has the bouncing behavior and cannot cross these points. Moreover, there are branching points where scalaron bounces an infinite number of times with decreasing amplitude and the Universe asymptotically approaches the de Sitter stage. Such accelerating behavior we call bouncing inflation. For this accelerating expansion there is no need for original potential U(Ï•)U(\phi) to have a minimum or to check the slow-roll conditions. A necessary condition for such inflation is the existence of the branching points. This is a new type of inflation. We show that bouncing inflation takes place both in the Einstein and Brans-Dicke frames.Comment: RevTex 13 pages, 13 figures, a few comments and references adde

    The Gauge Fields and Ghosts in Rindler Space

    Full text link
    We consider 2d Maxwell system defined on the Rindler space with metric ds^2=\exp(2a\xi)\cdot(d\eta^2-d\xi^2) with the goal to study the dynamics of the ghosts. We find an extra contribution to the vacuum energy in comparison with Minkowski space time with metric ds^2= dt^2-dx^2. This extra contribution can be traced to the unphysical degrees of freedom (in Minkowski space). The technical reason for this effect to occur is the property of Bogolubov's coefficients which mix the positive and negative frequencies modes. The corresponding mixture can not be avoided because the projections to positive -frequency modes with respect to Minkowski time t and positive -frequency modes with respect to the Rindler observer's proper time \eta are not equivalent. The exact cancellation of unphysical degrees of freedom which is maintained in Minkowski space can not hold in the Rindler space. In BRST approach this effect manifests itself as the presence of BRST charge density in L and R parts. An inertial observer in Minkowski vacuum |0> observes a universe with no net BRST charge only as a result of cancellation between the two. However, the Rindler observers who do not ever have access to the entire space time would see a net BRST charge. In this respect the effect resembles the Unruh effect. The effect is infrared (IR) in nature, and sensitive to the horizon and/or boundaries. We interpret the extra energy as the formation of the "ghost condensate" when the ghost degrees of freedom can not propagate, but nevertheless do contribute to the vacuum energy. Exact computations in this simple 2d model support the claim made in [1] that the ghost contribution might be responsible for the observed dark energy in 4d FLRW universe.Comment: Final version to appear in Phys. Rev. D. Comments on relation with energy momentum computations and few new refs are adde

    Prevalent morphometric vertebral fractures in professional male rugby players

    Get PDF
    There is an ongoing concern about the risk of injury to the spine in professional rugby players. The objective of this study was to investigate the prevalence of vertebral fracture using vertebral fracture assessment (VFA) dual energy X-ray absorptiometry (DXA) imaging in professional male rugby players. Ninety five professional rugby league (n = 52) and union (n = 43) players (n = 95; age 25.9 (SD 4.3) years; BMI: 29.5 (SD 2.9) kg.m2) participated in the research. Each participant received one VFA, and one total body and lumbar spine DXA scan (GE Lunar iDXA). One hundred and twenty vertebral fractures were identified in over half of the sample by VFA. Seventy four were graded mild (grade 1), 40 moderate (grade 2) and 6 severe (grade 3). Multiple vertebral fractures (≥2) were found in 37 players (39%). There were no differences in prevalence between codes, or between forwards and backs (both 1.2 v 1.4; p>0.05). The most common sites of fracture were T8 (n = 23), T9 (n = 18) and T10 (n = 21). The mean (SD) lumbar spine bone mineral density Z-score was 2.7 (1.3) indicating high player bone mass in comparison with age- and sex-matched norms. We observed a high number of vertebral fractures using DXA VFA in professional rugby players of both codes. The incidence, aetiology and consequences of vertebral fractures in professional rugby players are unclear, and warrant timely, prospective investigation

    Red-shifts near black holes

    Full text link
    A simple ordinary differential equation is derived governing the red-shifts of wave-fronts propagating through a non-stationary spherically symmetric space-time. Approach to an event horizon corresponds to approach to a fixed point; in general, the phase portrait of the equation illuminates the qualitative features of the geometry. In particular, the asymptotics of the red-shift as a horizon is approached, a critical ingredient of Hawking's prediction of radiation from black holes, are easily brought out. This asympotic behavior has elements in common with the universal behavior near phase transitions in statistical physics. The validity of the Unruh vacuum for the Hawking process can be understood in terms of this universality. The concept of surface gravity is extended to to non-stationary spherically symmetric black holes. Finally, it is shown that in the non-stationary case, Hawking's predicted flux of radiation from a black hole would be modified.Comment: 20 pages, plain Tex, IOP macros, 4 eps figures, accepted by CQ

    Stress-Energy Tensor Induced by Bulk Dirac Spinor in Randall-Sundrum Model

    Full text link
    Motivated by the possible extension into a supersymmetric Randall-Sundrum (RS) model, we investigate the properties of the vacuum expectation value (VEV) of the stress-energy tensor for a quantized bulk Dirac spinor field in the RS geometry and compare it with that for a real scalar field. This is carried out via the Green function method based on first principles without invoking the degeneracy factor, whose validity in a warp geometry is a priori unassured. In addition, we investigate the local behavior of the Casimir energy near the two branes. One salient feature we found is that the surface divergences near the two branes have opposite signs. We argue that this is a generic feature of the fermionic Casimir energy density due to its parity transformation in the fifth dimension. Furthermore, we investigate the self-consistency of the RS metric under the quantum correction due to the stress-energy tensor. It is shown that the VEV of the stress-energy tensor and the classical one become comparable near the visible brane if k ~ M ~ M_Pl (the requirement of no hierarchy problem), where k is the curvature of the RS warped geometry and M the 5-dimensional Planck mass. In that case the self-consistency of RS model that includes bulk fields is in doubt. If, however, k <~ M, then an approximate self-consistency of the RS-type metric may still be satisfied.Comment: 7 pages with 2 figure

    Twist and teleportation analogy of the black hole final state

    Full text link
    Mathematical connection between the quantum teleportation, the most unique feature of quantum information processing, and the black hole final state is studied taking into account the non trivial spacetime geometry. We use the twist operatation for the generalized entanglement measurement and the final state boundary conditions to obtain transfer theorems for the black hole evaporation. This would enable us to put together the universal quantum teleportation and the black hole evaporation in the unified mathematical footing. For a renormalized post selected final state of outgoing Hawking radiation, we found that the measure of mixedness is preserved only in the special case of final-state boundary condition in the micro-canonical form, which resmebles perfect teleportation channel.Comment: version_

    Novel Radar based In-Vehicle Occupant Detection Using Convolutional Neural Networks

    Get PDF
    • …
    corecore