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Bouncing inflation in a nonlinear R2 þ R4 gravitational model
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We study a gravitational model with curvature-squared R2 and curvature-quartic R4 nonlinearities. The

effective scalar degree of freedom � (the scalaron) has a multivalued potential Uð�Þ consisting of a

number of branches. These branches are fitted with each other in the branching and monotonic points. In

the case of four-dimensional space-time, we show that the monotonic points are penetrable for the

scalaron, while in the vicinity of the branching points, the scalaron has the bouncing behavior and cannot

cross these points. Moreover, there are branching points where the scalaron bounces an infinite number of

times with decreasing amplitude, and the Universe asymptotically approaches the de Sitter stage. Such

accelerating behavior we call bouncing inflation. For this accelerating expansion, there is no need for

original potential Uð�Þ to have a minimum or to check the slow-roll conditions. A necessary condition for

such inflation is the existence of the branching points. This is a new type of inflation. We show that

bouncing inflation takes place both in the Einstein and Brans-Dicke frames.

DOI: 10.1103/PhysRevD.81.124002 PACS numbers: 04.50.Kd, 95.36.+x, 98.80.�k

I. INTRODUCTION

Starting from the pioneering paper [1], the nonlinear
(with respect to the scalar curvature R) theories of gravity
fðRÞ have attracted the great deal of interest because these
models can provide a natural mechanism of the early
inflation. Nonlinear models may arise either due to quan-
tum fluctuations of matter fields including gravity [2], or as
a result of compactification of extra spatial dimensions [3].
Compared, e.g., to others higher-order gravity theories,
fðRÞ theories are free of ghosts and of Ostrogradski insta-
bilities [4]. Recently, it was realized that these models can
also explain the late-time acceleration of the Universe.
This fact resulted in a new wave of papers devoted to
this topic (see, e.g., recent reviews [5,6]).

The most simple, and, consequently, the most studied
models are polynomials of R: fðRÞ ¼ P

k
n¼0 CnR

n (k > 1),
e.g., quadratic Rþ R2 and quartic Rþ R4 ones. Active
investigation of these models, which started in the 1980s
[7,8], continues up to now [9]. Obviously, the correction
terms (to the Einstein action) with n > 1 give the main
contribution in the case of large R, e.g., in the early stages
of the Universe’s evolution. As it was shown first in [1] for
the quadratic model, such modification of gravity results in
early inflation. On the other hand, function fðRÞ may also
contain negative degrees of R. For example, the simplest
model isRþ R�1. In this case the correction term plays the
main role for small R, e.g., at the late stage of the
Universe’s evolution (see, e.g., [10,11], and numerous
references therein). Such modification of gravity may re-
sult in the late-time acceleration of our Universe [12].
Nonlinear models with polynomial as well as R�1-type

correction terms have also been generalized to the multi-
dimensional case (see, e.g., [10,11,13–18]).
It is well known that nonlinear models are equivalent to

linear-curvature models with additional scalar field �
(dubbed the scalaron in [1]). This scalar field corresponds
to additional degree of freedom of nonlinear models. The
dynamics of this field (as well as a possibility of inflation of
the Universe) is defined by potential UðRð�Þ; �Þ [see Eq.
(2.6) below1], where R ¼ Rð�Þ is a solution of
Eq. (2.3): expðA�Þ ¼ df=dR. Usually, models or particu-
lar cases of these models are considered where this equa-
tion has only one solution. In this case, potentialU is a one-
valued function of �. However, in the most general case
this equation has more than one solution and potential
becomes a multivalued function with a number of branch-
ing points (see, e.g., [19]). Investigation of the dynamical
behavior of scalar field and the Universe in such models
(especially in the vicinity of the branching points) is not a
trivial problem and may result in new important effects.
Therefore, it is of interest to consider the models with
multivalued potentials.
In the present paper, we study an example of such

models. Here, fðRÞ has both quadratic R2 and quartic R4

contributions. In this case Eq. (2.3) is a cubic equation with
respect to R and may have, in general, three real solutions/
branches Rið�Þ (i ¼ 1, 2, 3). We have investigated this
model in our paper [16]. However, in this paper we con-
sidered a special case of one real solution in D ¼ 8 space-
time. Now, we study the most interesting case of three real
solutions. These solutions are fitted with each other in the
branching points. There is also another type of matching
points where one-valued solutions are fitted with the three-
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1Starting from Sec. II, we denote the scalar curvature of the
original nonlinear model by �R.
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valued solutions. In the vicinity of these points potential
Uð�Þ is a monotonic function. Thus, these latter points are
dubbed monotonic ones. The main aim of the paper con-
sists in the investigation of dynamical behavior of the
system in four-dimensional space-time in the vicinity of
the branching and monotonic points. We show that dynam-
ics is quite different for branching and monotonic points.
The monotonic points are penetrable for the scalaron,
while in the branching points the scalaron has bouncing
behavior. There are branching points where the scalaron
bounces an infinite number of times with decreasing am-
plitude and the Universe asymptotically approaches the
de Sitter stage. Such accelerating behavior we call bounc-
ing inflation. We should note that for this type of inflation,
there is no need for original potential Uð�Þ to have a
minimum or to check the slow-roll conditions. A necessary
condition for such inflation is the existence of the branch-
ing points. This is a new type of inflation. We show that this
inflation takes place both in the Einstein and Brans-Dicke
frames. This is the main result of our paper. We think that
the scalaron field and the Universe have similar behavior in
the vicinity of the branching points for others polynomial
and R�1-type models resulting in both early inflation and
late-time acceleration. Of course, it is necessary to conduct
additional studies of these models, to confirm or refute this
assertion.

The paper is structured as follows. In Sec. II we study
briefly the equivalence between an arbitrary nonlinear fð �RÞ
theory and theory linear in another scalar curvature R but
which contains a scalaron field�. In Sec. III we consider a
particular example of nonlinear model with curvature-
quadratic and curvature-quartic correction terms and ob-
tain solutions/branches �Rið�Þ. The fitting procedure for
these branches is proposed in Sec. IV. The dynamics of
the scalaron and the Universe is investigated in Sec. V.
Here, we parametrize the scalaron potential in such a way
that it becomes a one-valued function. It provides the
possibility to study the dynamical behavior of the system
in the vicinity of the branching and monotonic points. We
show that in the vicinity of the branching point the scalaron
field bounces an infinite number of times with decreasing
amplitude, and the Universe acquires the accelerating ex-
pansion approaching asymptotically to the de Sitter stage.
Such accelerating expansion we call bouncing inflation. A
brief discussion of the obtained results is presented in the
concluding Sec. VI. In the Appendix, we show that bounc-
ing inflation in the vicinity of the branching point takes
place also in the Brans-Dicke frame.

II. GENERAL SETUP

It is well known that nonlinear theories

S ¼ 1

2�2
D

Z
M
dDx

ffiffiffiffiffiffi
j �gj

q
fð �RÞ; (2.1)

where fð �RÞ is an arbitrary smooth function of a scalar

curvature �R ¼ R½ �g� constructed from the D-dimensional
metric �gab (a; b ¼ 1; . . . ; D), are equivalent to theories
which are linear in another scalar curvature R but which
contain an additional self-interacting scalar field.
According to standard techniques [7,8], the corresponding
R-linear theory has the action functional

S ¼ 1

2�2
D

Z
M
dDx

ffiffiffiffiffiffi
jgj

q
½R½g� � gab�;a�;b � 2Uð�Þ�;

(2.2)

where

f0ð �RÞ ¼ df

d �R
:¼ eA� > 0; A :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
D� 2

D� 1

s
; (2.3)

and where the self-interaction potential Uð�Þ of the scalar
field � is given by

Uð�Þ ¼ 1
2ðf0Þ�D=ðD�2Þ½ �Rf0 � f� (2.4)

¼ 1
2e

�B�½ �Rð�ÞeA� � fð �Rð�ÞÞ�; (2.5)

B :¼ DffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðD� 2ÞðD� 1Þp : (2.6)

The metrics gab, �gab and the scalar curvatures R, �R of the
two theories (2.1) and (2.2) are conformally connected by
the relations2

gab ¼ �2 �gab ¼ ½f0ð �RÞ�2=ðD�2Þ �gab (2.7)

and

R ¼ ðf0Þ2=ð2�DÞ
�
�RþD� 1

D� 2
ðf0Þ�2 �gab@af

0@bf0

� 2
D� 1

D� 2
ðf0Þ�1 �hf0

�
(2.8)

via the scalar field � ¼ ln½f0ð �RÞ�=A. This scalar field �,
known as the scalaron [1], carries an additional degree of
freedom of original nonlinear model.
According to our definition (2.3), we consider the posi-

tive branch f0ð �RÞ> 0. Although the negative f0 < 0 branch
can be considered as well (see, e.g., Refs. [8,10,15]).
However, negative values of f0ð �RÞ result in negative effec-
tive gravitational ‘‘constant’’ Geff ¼ �2

D=f
0. Thus f0

should be positive for the graviton to carry positive kinetic
energy (see, e.g., [6]).
From action (2.2), we obtain the equation of motion of

the scalaron field �:

h�� @U

@�
¼ 0: (2.9)

If scalaron potential Uð�Þ has a minimum in a point �0

2The metrics gab and �gab represent the Einstein and Brans-
Dicke frames, respectively.
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dU

d�

���������0

¼ A

2ðD� 2Þ ðf
0Þ�D=ðD�2Þhj�0

¼ 0;

h :¼ Df� 2 �Rf0 ) hð�0Þ ¼ 0; (2.10)

then we can define the mass squared of the scalaron [10]:

m2
� ¼ d2U

d�2

���������0

¼ 1

2ðD� 1Þf00
ðD� 2Þf0 � 2 �Rf00

ðf0Þ2=ðD�2Þ

���������0

¼ ðD� 2Þf0 �Dff00=f0

2ðD� 1Þf00ðf0Þ2=ðD�2Þ

���������0

>0: (2.11)

A similar expression for the scalaron mass squared is also
given, e.g., in [6]. The only difference consists of an addi-

tional conformal prefactor 1=ðf0Þ2=ðD�2Þ originated from
the conformal metric transformation3 (2.7). Up to this
prefactor, the positiveness condition (2.11) of the mass
squared coincides with the stability condition of de Sitter
space in fð �RÞ gravity with respect to inhomogeneous and
homogeneous perturbations [6,21]. Additionally, to avoid
the Dolgov-Kawasaki instability [22] (instability with re-
spect to local perturbations), it is also required that
f00ð �RÞ � 0 (see also [23]).

For further research, it is useful to introduce a new
variable

X :¼ eA� � 1: (2.12)

Then, potential (2.6) and its first derivative read, corre-
spondingly,

UðXÞ ¼ 1
2ðXþ 1Þ�B=A½ �RðX þ 1Þ � f� (2.13)

and

dU

dX
¼ � B

2A
ðX þ 1Þð�B=AÞ�1½ �RðX þ 1Þ � f�

þ 1

2
ðX þ 1Þ�B=A �R: (2.14)

To conclude this section, we would like to recall that in
the multidimensional case, to avoid the effective four-
dimensional fundamental constant variation, it is necessary
to provide the mechanism of the internal spaces stabiliza-
tion. In these models, the scale factors of the internal
spaces play the role of additional scalar fields (geometrical
moduli/gravexcitons [24]). To achieve their stabilization,
an effective potential should have minima with respect to
all scalar fields (gravexcitons and scalaron). Our previous
analysis (see, e.g., [25]) shows that for a model of the form
(2.2), the stabilization is possible only for the case of
negative minimum of the potential Uð�Þ. However, it is
not difficult to realize that it is impossible to freeze out the
internal spaces in such an anti-de Sitter universe. Indeed, in
these models scalar fields decrease their amplitude of
oscillations around a minimum during the stage of expan-

sion of the Universe [due to a friction term in dynamical
equation of the form of (5.2) below] until the Universe
reaches its maximum. Then, the Universe turns to the stage
of contraction and the amplitudes of scalar fields start to
increase again. Thus, geometrical moduli are not stabilized
in such models. Therefore, in our present paper we do not
investigate the problem of the extra dimension stabiliza-
tion, but we focus our attention on the dynamics of the
scalaron field and the Universe in four-dimensional case.

III. THE R2 þ R4-MODEL

In this section we analyze a model with curvature-
quadratic and curvature-quartic correction terms of the
type

fð �RÞ ¼ �Rþ � �R2 þ � �R4 � 2�D: (3.1)

We start our investigation for an arbitrary number of di-
mensions D, but in the most particular examples we shall
put D ¼ 4 (unless stated otherwise). First of all, we define
the relation between the scalar curvature �R and the scalaron
field �. According to Eq. (2.3), we have

f0 ¼ eA� ¼ 1þ 2� �Rþ 4� �R3: (3.2)

The definition (2.3) f0 ¼ expðA�Þ clearly indicates that we
choose the positive branch f0 > 0. For our model (3.1), the
surfaces f0 ¼ 0 as functions �R ¼ �Rð�; �Þ are given in
Fig. 1. As it easily follows from Eq. (3.2), points where
all three values �R, �, and � are positive correspond to the
region f0 > 0. Thus, this picture shows that we have one
simply connected region f0 > 0 and two disconnected
regions f0 < 0.
Equation (3.2) can be rewritten equivalently in the form

�R 3 þ �

2�
�R� 1

4�
X ¼ 0; (3.3)

-2

0

2
-2

0

2

-2

0

2

R

f’ 0

f’ 0

f’ 0

-2

0

2

FIG. 1 (color online). The surfaces f0 ¼ 0 as functions �R ¼
�Rð�;�Þ for the model (3.1).

3Conformal transformation for mass squared of scalar fields in
models with conformally related metrics is discussed in [20].
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X � eA� � 1; �1<�<þ1 ) �1<X <þ1:

(3.4)

Equation (3.3) has three solutions �R1;2;3, where one or three

of them are real-valued. Let

q :¼ �

6�
; r :¼ 1

8�
X: (3.5)

The sign of the discriminant

Q :¼ r2 þ q3 (3.6)

defines the number of real solutions:

Q> 0 ) = �R1 ¼ 0; = �R2;3 � 0;

Q ¼ 0 ) = �Ri ¼ 0 8 i; �R1 ¼ �R2;

Q < 0 ) = �Ri ¼ 0 8 i:

(3.7)

Physical scalar curvatures correspond to real solutions
�RiðXÞ. It is the most convenient to consider �Ri ¼ �RiðXÞ
as solution family depending on the two additional pa-
rameters (�; �): signð�Þ ¼ signð�Þ ) Q> 0, signð�Þ �
signð�Þ ) Q _ 0. The case signð�Þ ¼ signð�Þ was con-
sidered in our paper [16]. In the present paper we inves-
tigate the most interesting case signð�Þ � signð�Þ of
multivalued solutions.

For Q> 0, the single real solution �R1 is given as

�R 1 ¼ ½rþQ1=2�1=3 þ ½r�Q1=2�1=3 :¼ z1 þ z2; (3.8)

where we can define z1;2 in the form

z31;2 ¼pe��; p2 ¼ r2�Q¼�q3; coshð�Þ¼ rffiffiffiffiffiffiffiffiffiffi�q3
p :

(3.9)

Taking into account Eq. (3.5), the function X reads

Xð�Þ ¼ 8�
ffiffiffiffiffiffiffiffiffiffi
�q3

q
coshð�Þ: (3.10)

The three real solutions �R1;2;3ðXÞ for Q< 0 are given as

�R 1 ¼ s1 þ s2;

�R2 ¼ 1
2ð�1þ i

ffiffiffi
3

p Þs1 þ 1
2ð�1� i

ffiffiffi
3

p Þs2
¼ eiðð2�Þ=3Þs1 þ e�iðð2�Þ=3Þs2;

�R3 ¼ 1
2ð�1� i

ffiffiffi
3

p Þs1 þ 1
2ð�1þ i

ffiffiffi
3

p Þs2
¼ e�iðð2�Þ=3Þs1 þ eiðð2�Þ=3Þs2;

(3.11)

where we can fix the Riemann sheet of Q1=2 by setting in
the definitions of s1;2:

s1;2 :¼ ½r� ijQj1=2�1=3: (3.12)

A simple Mathematica calculation gives for Vieta’s rela-
tions from (3.11)

�R1 þ �R2 þ �R3 ¼ 0;

�R1
�R2 þ �R1

�R3 þ �R2
�R3 ¼ �3s1s2 ¼ 3q;

�R1
�R2

�R3 ¼ s31 þ s32 ¼ 2r: (3.13)

In order to work with explicitly real-valued �Ri, we rewrite
s1;2 from (3.12) as follows:

s1;2 ¼ jbj1=3e�i#=3;

jbj2 ¼ r2 þ jQj ¼ r2 �Q ¼ �q3;

cosð#Þ ¼ r

jbj ¼
rffiffiffiffiffiffiffiffiffiffi�q3

p ;

(3.14)

and get via (3.11)

�R 1 ¼ s1 þ s2 ¼ 2jbj1=3 cosð#=3Þ;
�R2 ¼ eiðð2�Þ=3Þs1 þ e�iðð2�Þ=3Þs2

¼ 2jbj1=3 cosð#=3þ 2�=3Þ;
�R3 ¼ e�iðð2�Þ=3Þs1 þ eiðð2�Þ=3Þs2

¼ 2jbj1=3 cosð#=3� 2�=3Þ;

(3.15)

or

�Rk ¼ 2jbj1=3 cos
�
# þ 2�k

3

�
¼ 2

ffiffiffiffiffiffiffi�q
p

cos

�
# þ 2�k

3

�
;

k ¼ �1; 0; 1: (3.16)

In order to understand the qualitative behavior of these
three real-valued solutions as part of the global solution
picture, we first note that, according to (3.3), we may
interpret X as single-valued function

Xð �RÞ ¼ 4� �R3 þ 2� �R (3.17)

and look what is happening when we change (�; �).
Obviously, the inverse function �RðXÞ has three real-valued
branches when Xð �RÞ is not a monotonic function, but
instead has a minimum and a maximum, i.e. when

@ �RX :¼ X0 ¼ 12� �R2 þ 2� ¼ 0 ) �R2 ¼ � �

6�
(3.18)

has two real solutions �R� ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��=ð6�Þp
and correspond-

ing extrema4

Xð �R�Þ ¼ 4

3
� �R�: (3.19)

It should hold signð�Þ � signð�Þ in this case so that we
find

� > 0; � < 0: Xmax ¼ Xð �R�Þ; Xmin ¼ Xð �RþÞ;
� < 0; � > 0: Xmax ¼ Xð �RþÞ; Xmin ¼ Xð �R�Þ:

(3.20)

4It is worth of noting that f00ð �R�Þ ¼ X0ð �R�Þ ¼ 0.
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The transition from the three-real-solution regime to the
one-real-solution regime occurs when maximum and mini-
mum coalesce at the inflection point

�Rþ ¼ �R� ¼ 0 ) � ¼ 0; � � 0: (3.21)

(We note that here we consider the nondegenerate case
� � 0. Models with � ¼ 0 are degenerate ones and are
characterized by quadratic scalar curvature terms only.)
Because of �1 � X � þ1, we may consider the limit
X ! þ1 where in leading approximation

4� �R3 � X ! þ1 (3.22)

so that

�RðX ! 1Þ ! signð�Þ � 1: (3.23)

Leaving the restriction X � �1 for a moment aside, we
have found that for ��< 0 there exist three real solution

branches �R1;2;3:

�> 0: �1 � �R1 � �R�; �1� X � Xmax;

�R� � �R2 � �Rþ; Xmax � X � Xmin;

�Rþ � �R3 � þ1; Xmin � X � þ1;

� < 0: �1 � �R1 � �R�; þ1� X � Xmin;

�R� � �R2 � �Rþ; Xmin � X � Xmax;

�Rþ � �R3 � þ1; Xmax � X � �1:

(3.24)

It remains for each of these branches to check which of the
solutions �Rk from (3.16) can be fit into this scheme. Finally,
one will have to set the additional restriction X � �1 on
the whole picture.

IV. THE FITTING PROCEDURE

We start by considering a concrete example. For defi-
niteness, let us assume � > 0, �< 0. The pairwise fitting
of the various solution branches should be performed at
points where Q ¼ 0 and different branches of the three-
solution sector are fitted with each other or to the branches
of the one-solution sector. The points with Q ¼ 0 corre-
spond to the X values Xmin and Xmax. Explicitly, we have
from (3.19)

Xð �R�Þ ¼ 4

3
� �R� ¼ � 4

3
�

ffiffiffiffiffiffiffiffiffiffiffi
� �

6�

s
; (4.1)

and for the concrete configuration � > 0, �< 0

Xmax ¼ Xð �R�Þ ¼ � 4

3
�

ffiffiffiffiffiffiffiffiffiffiffi
� �

6�

s
� 0;

Xmin ¼ Xð �RþÞ ¼ 4

3
�

ffiffiffiffiffiffiffiffiffiffiffi
� �

6�

s
� 0:

(4.2)

Next, we find from the defining Eq. (3.14) for the angle #
that at Q ¼ 0, it holds

cosð#Þ ¼ r

jbj ¼
r

jrj (4.3)

so that

Xmax � 0 ) r > 0 ) cosð#Þ ¼ 1 ) # ¼ 2�m;

m 2 Z;

Xmin � 0 ) r < 0 ) cosð#Þ ¼ �1 ) # ¼ �þ 2�n;

n 2 Z: (4.4)

Now, the fitting of the various solution branches can be
performed as follows (see Fig. 2). We start with the branch
�1 :¼ ðRþ � �R � þ1; Xmin < X <þ1Þ. Moving in on
this branch from X � þ1, we are working in the one-
solution sector Q> 0 with

�Rð�1;QÞ ¼ ½rþQ1=2�1=3 þ ½r�Q1=2�1=3 (4.5)

until we hit Q ¼ 0 at X ¼ Xmax. At this point P1 :¼
ð�1; X ¼ XmaxÞ 2 �1, we have to perform the first fitting.
Because of r > 0, we may choose

�Rð�1;Q ¼ 0Þ ¼ 2r1=3 ¼ 2jbj1=3 (4.6)

so that as simplest parameter choice in (3.16), we set

P1 ¼ ð�1; X ¼ Xmax; Q ¼ 0Þ � # ¼ 0; k ¼ 0:

(4.7)

Hence, the parametrization for (�1,Q< 0) will be given as

�Rð�1; Q < 0Þ ¼ 2jbj1=3 cosð�=3Þ: (4.8)

For later convenience, we have replaced here the # from
Eqs. (3.15) and (3.16) by �. The reason will become clear
from the subsequent discussion. We note that on this �1

FIG. 2. The schematic drawing of the real solution branches
and the matching points P1;2;3;4 This figure shows that points P2;3

(correspondingly, � ¼ �, 2�) and points P1;4 (correspondingly,

� ¼ 0, 3�) are of a different nature. So, P2;3 and P1;4 we shall

call branching points and monotonic points (in the sense that
function �R is monotonic in the vicinity of these points), respec-
tively.
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segment, we may set # ¼ �. Let us further move on �1

until its end at Xmin, where againQ ¼ 0. Because there was
no other point with Q ¼ 0 on this path, the smoothly
changing � can at this local minimum P2 ¼ �1 \ �2 ¼
ðX ¼ Xmin; �R ¼ �RþÞ only take one of the values � ¼
��. For definiteness, we choose it as �ðP2Þ ¼ �. Hence,
it holds

�RðP2Þ ¼ 2jbj1=3 cosð�=3Þ ¼ jbj1=3 ¼ ffiffiffiffiffiffiffi�q
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��=ð6�Þ

q
¼ �Rþ (4.9)

as it should hold. For convenience, we may parametrize our
movement on the cubic curve by simply further increasing
�. This gives for moving on �2 ¼ ð �Rþ � �R � �R�; Xmin �
X � XmaxÞ from the local minimum at P2 to the local
maximum at P3 ¼ �2 \ �3 ¼ ðX ¼ Xmax; �R ¼ �R�Þ a fur-
ther increase of � by � up to �ðP3Þ ¼ 2�. Accordingly, we
find the complete consistency

�RðP3Þ ¼ 2jbj1=3 cosð2�=3Þ ¼ �jbj1=3 ¼ � ffiffiffiffiffiffiffi�q
p

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��=ð6�Þ

q
¼ �R�: (4.10)

By further increasing � up to � ¼ 3�, we reach the point
P4 ¼ ðX ¼ Xmin; Q ¼ 0Þ 2 �3 with

�RðP4Þ ¼ 2jbj1=3 cosð3�=3Þ ¼ �2jbj1=3 ¼ �2jrj1=3:
(4.11)

Because of r < 0, we can smoothly fit it to the one-solution
branch

�Rð�4; QÞ ¼ ½rþQ1=2�1=3 þ ½r�Q1=2�1=3 (4.12)

by setting trivially

�RðP4Þ ¼ 2ð�jrjÞ1=3 ¼ �2jrj1=3: (4.13)

Summarizing, we arrived at a very simple and transparent
branch fitting picture, where all the movement in the three-
solution sector can be parametrized by choosing the effec-
tive angle as � 2 ½0; 3��. Finally, we have to fit this picture
in terms of smoothly varying � 2 ½0; 3�� with the three
solutions �Rk from (3.16). For this purpose, we note that the
single value # 2 ½0; �� in (3.16) is a projection of our
smoothly varying � 2 ½0; 3��. Fixing an arbitrary #, one
easily finds the following correspondences:

�ð�1; #Þ ¼ #; �ð�2; #Þ ¼ 2�� #;

�ð�3; #Þ ¼ 2�þ #
(4.14)

and hence

�R½�ð�1; #Þ� ¼ 2jbj1=3 cos
�
#

3

�
¼ �Rðk¼0Þ ¼ �R3;

�R½�ð�2; #Þ� ¼ 2jbj1=3 cos
�
2�� #

3

�

¼ 2jbj1=3 cos
�
# � 2�

3

�
¼ �Rðk¼�1Þ ¼ �R2;

�R½�ð�3; #Þ� ¼ 2jbj1=3 cos
�
2�þ #

3

�
¼ �Rðk¼1Þ ¼ �R1:

(4.15)

Analogically, we can obtain rules for fitting procedure in
the case � < 0,�> 0. So, all the fitting mechanism is clear
now and can be used in further considerations.

V. DYNAMICS OF THE UNIVERSE AND
SCALARON

To study the dynamics of the Universe in our model, we
assume that the four-dimensional metric g in (2.7) is
spatially flat Friedmann-Robertson-Walker one:

g ¼ �dt 	 dtþ a2ðtÞd~x 	 d~x: (5.1)

Thus, scalar curvatures R and �R and the scalaron � are
functions of time. Therefore, Eq. (2.9) for homogeneous
field � reads

€�þ 3H _�þ dU

d�
¼ 0; (5.2)

where the Hubble parameter H ¼ _a=a and the dots denote
the differentiation with respect to time t. Potential U is
defined by Eq. (2.6). Because U depends on �R which is a
multivalued function of � (or, equivalently, of X), the
potential U is also a multivalued function of X (see
Fig. 3).5 However, our previous analysis shows that we
can avoid this problem making X and �R single-valued
functions of a new field � (we recall that we consider the
particular case of ��< 0 when �< 0, � > 0):

Xð�Þ ¼
8><
>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=�Þð2j�j=3Þ3p
coshð�Þ; �< 0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=�Þð2j�j=3Þ3p
cosð�Þ; 0� �� 3�;

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=�Þð2j�j=3Þ3p
coshð�� 3�Þ; �> 3�;

(5.3)

and

5In spite of the divergency of d �R=dX in the branching points
P2;3, the derivatives dU=dX are finite in these points in accor-
dance with Eq. (2.14). Moreover, �R and X have the same values
in branching points for different branches. Therefore, the
branches arrive at the branching points with the same values
of dU=dX, and Fig. 3 clearly shows it.
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�Rð�Þ ¼
8><
>:
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�j=ð6�Þp
coshð�=3Þ; � < 0;

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�j=ð6�Þp

cosð�=3Þ; 0 � � � 3�;

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�j=ð6�Þp

cosh½ð�=3Þ � ��; � > 3�:

(5.4)

The function X ¼ Xð�Þ is schematically given in Fig. 4. It
is necessary to keep in mind that we consider the case f0 >
0 ! X >�1. If we demand that Xmin >�1 (in opposite
case our graphic Xð�Þ will be cut into two disconnected
parts), then the parameters � and � should satisfy the
inequality:

Xmin ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=�Þð2j�j=3Þ3

q
>�1 ) j�j � 3

2�
1=3: (5.5)

The maximal value of � (which is greater than 3� in the
case Xmin >�1) is defined from the transcendental equa-
tion

1
2 ½ðcþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1

p
Þ1=3 þ ðc�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 1

p
Þ1=3�

¼ cosh½ð�max=3Þ � ��; (5.6)

where c :¼ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=�Þð2j�j=3Þ3p Þ�1. The limit X ! �1 cor-
responds to the limit � ! �max. With the help of Eq. (5.3)
and formula

d�

d�
¼ 1

AðX þ 1Þ
dX

d�
; (5.7)

we can also get the following useful expressions:

d�

d�

���������¼0;�;2�;3�
¼ dX

d�

���������¼0;�;2�;3�
¼ 0: (5.8)

It can be easily verified that field � satisfies the following
equation:

€�þ 3H _�þ �ð�Þ _�2 þGð�Þ dU
d�

¼ 0: (5.9)

Here, we introduce the one dimensional metric on the
moduli space Gð�Þ � G11 ¼ ðG11Þ�1 ¼ ðd�=d�Þ�2 with
the corresponding Christoffel symbol �ð�Þ � �1

11 ¼
ð1=2ÞG11ðG11Þ;� ¼ ðd2�=d�2Þ=ðd�=d�Þ.

A. Properties of the potential Uð�Þ
As we mentioned above, the potential (2.6) as a function

of � is a single-valued one. Now, we want to investigate
analytically some general properties of Uð�Þ. In this sub-
section, D is an arbitrary number of dimensions and signs
of � and � are not fixed if it is not specified particularly.
First, we consider the extrema of the potential Uð�Þ. To

find the extremum points, we solve the equation

dU

d�
¼ dU

d�

d�

d�
¼ dU

d�

1

AðX þ 1Þ
dX

d�
¼ 0: (5.10)

Therefore, the extrema correspond either to the solutions of
the Eq. (2.10) dU=d� ¼ 0 for finite dX=d� (X >�1) or to
the solutions of the equation dX=d� ¼ 0 (X >�1) for
finite dU=d�. The form of the potential U [see
Eqs. (2.4) and (2.6)] shows that this potential and its
derivative dU=d� is finite for X >�1. Thus, as it follows
from Eq. (5.8), the potential Uð�Þ has extrema at the
matching points � ¼ 0, �, 2�, 3�. Additional extremum
points are real solutions of the Eq. (2.10). For our model
(3.1), this equation reads

�R 4�

�
D

2
� 4

�
þ �R2�

�
D

2
� 2

�
þ �R

�
D

2
� 1

�
�D�D ¼ 0:

(5.11)

The form of this equation shows that there are two particu-
lar cases: D ¼ 8 and D ¼ 4. The D ¼ 8 case was consid-
ered in [16]. Let us consider now the case D ¼ 4:

�R 4 � 1

2�
�Rþ 2�4

�
¼ 0: (5.12)

FIG. 4. The schematic drawing of Eq. (5.3) in the case Xmin >

�1. Here, Xmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=�Þð2j�j=3Þ3p

, Xmin ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=�Þð2j�j=3Þ3p
and �max is defined by Eq. (5.6).

-1 -0.75 -0.5 -0.25 0.25 0.5 0.75 1
X

0.5

1

1.5

2

2.5
U

P3

P2 P1

P4

FIG. 3. The form of the potential (2.6) as a multivalued func-
tion of X ¼ eA� � 1 in the case D ¼ 4, �4 ¼ 0:1, � ¼ 1, and
� ¼ �1. Points P1;2;3;4 are defined in Fig. 2.
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It is worth of noting that parameter� disappeared from this
equation. Thus � has no an influence on a number of
additional extremum points. To solve this quartic equation,
we should consider an auxiliary cubic equation

u3 � 8�4

�
u� 1

4�2
¼ 0: (5.13)

The analysis of this equation can be performed in similar
manner as we did it for the cubic Eq. (3.3). Let us introduce
the notations:

�q :¼ � 8

3

�4

�
; �r :¼ 1

8

1

�2
;

�Q :¼ �r2 þ �q3 ¼ 1

�4

�
1

82
� �

�
8�4

3

�
3
�
:

(5.14)

It make sense to consider two separate cases.
1. sign� ¼ �sign�4 ) �Q> 0.
In this case we have only one real solution of Eq. (5.13):

u1 ¼ ½�rþ �Q1=2�1=3 þ ½ �r� �Q1=2�1=3 > 0: (5.15)

Then, solutions of the quartic (5.12) are the real roots of
two quadratic equations

�R 2 � ffiffiffiffiffi
u1

p �Rþ 1

2
ðu1 � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u21 þ 3q

q
Þ ¼ 0; � ¼ sign�:

(5.16)

Simple analysis shows that for any sign of � we obtain two
real solutions:

� < 0 ) �RðþÞ
1;2 ¼ �1

2u
1=2
1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1

4u1 þ 1
2ðu21 þ 3qÞ1=2

q
;

� > 0 ) �Rð�Þ
1;2 ¼ 1

2u
1=2
1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1

4u1 þ 1
2ðu21 þ 3qÞ1=2

q
:

(5.17)

2. sign� ¼ sign�4 ) �Q _ 0.
It is not difficult to show that in this case the real

solutions of the form of (5.17) (where we should make
the evident substitution u21 þ 3q ! u21 � 3jqj) takes place
if

�Q> 0 ) j�j1=3 < 3

32j�4j : (5.18)

Now, we want to investigate zeros of the potentialU. For
f0 � 0 ) X � �1, the condition of zeros of the potential
(2.4) is

�Rf0 � f ¼ 0 ) 3� �R4 þ � �R2 þ 2�D ¼ 0: (5.19)

Therefore, zeros are defined by equation

�R 2 ¼ � �

6�
�

��
�

6�

�
2 � 2�D

3�

�
1=2

: (5.20)

Obviously, the necessary conditions for zeros are

� > 0 ) �D � �2=ð24�Þ;
� < 0 ) �D � ��2=ð24j�jÞ: (5.21)

Additionally, we should check that the right-hand side of
the Eq. (5.20) is positive.
Let us consider now asymptotical behavior of the poten-

tialUð�Þ. Here, we want to investigate limits � ! �max and
� ! �1. In the former case we get

� ! �max ) Uð�Þ ! �signðfð�maxÞÞ � 1: (5.22)

In the latter case we obtain

� ! �1 ) Uð�Þ 
 exp

�
8�D

D� 2
�

�

!
8<
:
þ1; D > 8;
const> 0; D ¼ 8;
þ0; 2<D< 8;

(5.23)

where we used Eqs. (5.3) and (5.4). This result coincides
with conclusions of Appendix A in [16].
To illustrate the described above properties, we draw the

potential Uð�Þ in Fig. 5 for the following parameters: D ¼
4, �4 ¼ 0:1, � ¼ 1, and � ¼ �1. These parameters con-
tradict the inequalities (5.18) and (5.21). Therefore, � ¼ 0,
�, 2�, 3� are the only extremum points of the potential
Uð�Þ, and zeros are absent. These parameters are also
satisfy the condition (5.5). The absence of zeros means
that all minima of the potential Uð�Þ are positive.
For our subsequent investigations, it is useful also to

consider an effective force and mass squared of the field �.
As it follows from Eq. (5.9), the effective force is

2 2 3

0.5

1

1.5

2

2.5
U

max

FIG. 5. The form of the potential (2.6) as a function of � in the
case D ¼ 4, �4 ¼ 0:1, � ¼ 1, and � ¼ �1. For these values of
the parameters, all extrema correspond to the matching points
� ¼ 0, �, 2�, 3�. In the branching points � ¼ �, 2� the
potential has local maximum and local nonzero minimum,
respectively, and the monotonic points � ¼ 0, 3� are the in-
flection ones. Potential tends asymptotically toþ1 when � goes
to �max and to zero when � ! �1.
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F ¼ �Gð�Þ dU
d�

: (5.24)

Varying Eq. (5.9) with respect to field �, we obtain dy-
namical equation for small fluctuation �� where mass
squared reads

m2
� ¼ Gð�Þ d

2U

d�2
þ dGð�Þ

d�

dU

d�
: (5.25)

In Fig. 6 we show the effective force and the mass squared
as functions of � for the potential drawn in Fig. 5. These
figures indicate that field � may have very nontrivial be-
havior. This nontriviality follows from two reasons. First,
the field � has noncanonical kinetic term which result in
appearing of nonflat moduli space metric Gð�Þ and deriva-
tive of Gð�Þ in Eq. (5.9). Second, the function Gð�Þ has
singular behavior at the matching points � ¼ 0, �, 2�, 3�.
Thus, our intuition does not work when we want to predict
dynamical behavior of fields with equations of the form of
(5.9) with potential drawn in Fig. 5, especially when field
approaches the matching points. It is necessary to solve
equations analytically or to investigate them numerically.
Such analysis for our model is performed in the next
subsection where we concentrate our attention to the
most interesting case where all extrema correspond to the
matching points � ¼ 0, �, 2�, 3�.

B. Dynamical behavior of the Universe and field �

Now, we intend to investigate dynamical behavior of
scalar field � and the scale factor a in more detail. There
are no analytic solutions for considered model. So, we use
numerical calculations. To do it, we apply a Mathematica
package proposed in [26] and adjusted to our models and
notations in Appendix A of our paper [18]. According to
these notations, all dimensional quantities in our graphics
are given in the Planck units. Additionally, in the present
paper we should remember that metric on the moduli space

is not flat and defined in Eq. (5.9). For example, the
canonical momenta and the kinetic energy read

P� ¼ a3

�2
4

G11
_� ¼ a3

�2
4

�
d�

d�

�
2
_�;

Ekin ¼ 1

2�2
4

G11
_�2 ¼ �2

4

2a6
G11P2

� ¼ 1

2�2
4

�
d�

d�

�
2
_�2;

(5.26)

where 8�G � �2
4 and G is four-dimensional Newton con-

stant. To understand the dynamics of the Universe, we shall
also draw the Hubble parameter

3

�
_a

a

�
2 � 3H2 ¼ 1

2
G11

_�2 þUð�Þ (5.27)

and the acceleration parameter

q � €a

H2a
¼ 1

6H2

�
�4� 1

2
G11

_�2 þ 2Uð�Þ
�
: (5.28)

Figure 6 shows that the effective force changes its sign
and the mass squared preserves the sign when � crosses the
branching points �, 2� and vise versa, the effective force
preserves the sign and the mass squared changes the sign
when � crosses the monotonic points 0, 3�. Therefore, it
make sense to consider these cases separately.

1. Branching points � ¼ �, 2�

First, we consider the dynamical behavior of the
Universe and a scalaron in the vicinity of the branching
point � ¼ 2� which is the local minimum of the potential
in Fig. 5. The time evolution of a scalaron field � and its
kinetic energy Ekin are drawn in Fig. 7. Here and in all
pictures below, we use the same parameters as in Fig. 5.
The time t is measured in the Planck times and classical
evolution starts at t ¼ 1. For the initial value of �, we take
�initial ¼ 3:5. We plot in Fig. 8 the evolution of the loga-
rithms of the scale factor aðtÞ (left panel) and the evolution
of the Hubble parameterHðtÞ (right panel) and in Fig. 9 the

2 3
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-25

-20

-15

-10

-5

5

10
F

2 3

-100

-75

-50

-25

25

50

75

100
m 2

FIG. 6. The effective force (5.24) (left panel) and the mass squared (5.25) (right panel) for the potential Uð�Þ drawn in Fig. 5. These
pictures clearly show singular behavior of F and m2

� in the matching points � ¼ 0, �, 2�, 3�.
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evolution of the parameter of acceleration qðtÞ (left panel)
and the equation of state parameter !ðtÞ ¼ ½2qðtÞ þ 1�=3
(right panel).

Figure 7 demonstrates that scalar field � bounces an
infinite number of times with decreasing amplitude in the
vicinity of the branching point � ¼ 2�. � cannot cross this
point. From Figs. 8 and 9, we see that the Universe asymp-
totically approaches the de Sitter stage: H ! const, q !
þ1, and ! ! �1. Such accelerating behavior we call
bouncing inflation.

Concerning the dynamical behavior in the vicinity of the
branching point � ¼ �, our analysis (similar performed
above) shows that the scalaron field � cannot cross this
local maximum regardless of the magnitude of initial
velocity in the direction of � ¼ �. It bounces back from
this point.

2. Monotonic points � ¼ 0, 3�

Now, we want to investigate the dynamical behavior of
the model in the vicinity of the monotonic points � ¼ 0,
3� which are the points of inflection of the potential in
Fig. 5. Figures 5 and 6 show that for both of these points the

model has the similar dynamical behavior. Therefore, for
definiteness, we consider the point � ¼ 3�. To investigate
numerically the crossing of the monotonic point 3�, it is
necessary to take very small value of a step �t. It can be
achieved if we choose very large value of the maximum
number of steps. Thus, for the given value of the maximum
number of steps, the closer to 3� the initial value �initial is
taken, the smaller step �t we obtain. For our calculation,
we choose �initial ¼ 9:513. Figure 10 demonstrates that
scalar field � slowly crosses the monotonic point 3� with
nearly zero kinetic energy.6 Then, just after the crossing,
the kinetic energy has its maximum value and starts to
decrees gradually when � moves to the direction 2�.
Figures 11 and 12 demonstrate the behavior of the

Universe before and after crossing 3�. We do not show
here the vicinity of the branching point 2� because when �
approaches 2� the Universe has the bouncing inflation
described above. Hence, there are 3 phases sequentially:

5 10 15 20 25 30 35
t
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5

Ln (a) Ln (a)

10 11 12 13 14 15 16 17
t

2.6
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3.2

3.4

5 10 15 20 25 30 35
t

0.1

0.2

0.3

0.4

H

FIG. 8. The time evolution of the logarithms of the scale factor aðtÞ (left panel) and the Hubble parameter HðtÞ (right panel) for the
trajectory drawn in Fig. 7. A slightly visible oscillations of lnðaÞ (caused by bounces) can be seen by magnification of this picture
(middle panel).
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FIG. 7. Dynamical behavior of scalar field �ðtÞ (left panel) and its kinetic energy EkinðtÞ (right panel) in the vicinity of the branching
point � ¼ 2�.

6The derivative d�=dt goes to �1 when � ! 3� (with differ-
ent speed on different sides of 3�) but d�=d� ¼ 0 at 3� and
kinetic energy is finite [see Eq. (5.26)].
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the short de Sitter-like stage during slow rolling in the
vicinity of the inflection point before crossing, then decel-
erating expansion just after the crossing with gradual tran-
sition to the accelerating stage again when � approaches
the branching point 2�. Clearly, for another monotonic

point � ¼ 0, we get the similar crossing behavior (without
the bouncing stage when � ! �1). Therefore, the mono-
tonic points � ¼ 0 and � ¼ 3� are penetrable for the
scalaron field �.
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FIG. 9. The parameter of acceleration qðtÞ (left panel) and the equation of state parameter !ðtÞ (right panel) for the scale factor in
Fig. 8.
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FIG. 10. Dynamical behavior of scalar field �ðtÞ (left panel) and its time derivative d�=dt (middle panel) and kinetic energy EkinðtÞ
(right panel) for the case of crossing of the inflection point � ¼ 3�.
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VI. CONCLUSIONS

We have investigated the dynamical behavior of the
scalaron field � and the Universe in nonlinear model
with curvature-squared and curvature-quartic correction
terms: fð �RÞ ¼ �Rþ � �R2 þ � �R4 � 2�D. We have chosen
parameters � and � in such a way that the scalaron
potential Uð�Þ is a multivalued function consisting of a
number of branches. These branches are fitted with each
other either in the branching points (points P2;3 in Fig. 3) or

in the monotonic points (points P1;4 in Fig. 3). We have

reparametrized the potential U in such a way that it be-
comes the one-valued function of a new field variable � ¼
�ð�Þ (see Fig. 5). This has enabled us to consider the
dynamical behavior of the system in the vicinity of the
branching and monotonic points in (D ¼ 4)-dimensional
space-time. Our investigations show that the monotonic
points are penetrable for the scalaron field (see Figs. 10–
12), and while in the vicinity of the branching points, the
scalaron has the bouncing behavior and cannot cross these
points. Moreover, there are branching points where the
scalaron bounces an infinite number of times with decreas-
ing amplitude and the Universe asymptotically approaches
the de Sitter stage (see Figs. 7–9). Such accelerating be-
havior we call bouncing inflation. It should be noted that
for this type of inflation there is no need for original
potential Uð�Þ to have a minimum or to check the slow-
roll conditions. A necessary condition is the existence of
the branching points. This is a new type of inflation. We
show that this inflation takes place both in the Einstein and
Brans-Dicke frames. We have found this type of inflation
for the model with the curvature-squared and curvature-
quartic correction terms which play an important role
during the early stages of the Universe evolution.
However, the branching points take also place in models
with �R�1-type correction terms [19]. These terms play an
important role at late times of the evolution of the
Universe. Therefore, bouncing inflation may be respon-
sible for the late-time accelerating expansion of the
Universe.

To conclude our paper, we want to make a few com-
ments. First, there is no need for fine tuning of the initial
conditions to get the bouncing inflation. In Figs. 7–9, we
have chosen for definiteness the initial conditions � ¼ 3:5
and Ekin ¼ 0. However, our calculations show that these
figures do not qualitatively change if we take arbitrary � 2
ð�; 2�Þ and nonzero Ekin. Second, Fig. 6 indicates that the
minimum at � ¼ 2� is stable with respect to tunneling
through the barrier at this point. The situation is similar to
the quantum mechanical problem with infinitely high bar-
rier. We have already stressed that the form of the potential
Fig. 5 is not sufficient to predict the dynamical behavior of
�. This field has very nontrivial behavior because of the
noncanonical kinetic term and singular (at the matching
points) nonflat moduli space metric Gð�Þ. Therefore, it is
impossible to ‘‘jump’’ quantum mechanically from one
branch to another. We cannot apply to our dynamical
system the standard tunneling approach (e.g., in [27]).
This problem needs a separate investigation. Third, it is
worth noting that the Universe with a bounce preceding the
inflationary period was considered in [28] where it was
shown that due to a bounce, the spectrum of primordial
perturbations has the characteristic features. It indicates
that the similar effect can take place in our model. This is
an interesting problem for future research.
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APPENDIX: BOUNCING INFLATION IN THE
BRANS-DICKE FRAME

According to Eq. (2.7), the four-dimensional
Friedmann-Robertson-Walker metrics in the Einstein

1.05 1.1 1.15 1.2 1.25
t

0.2

0.4

0.6

0.8

1

q

1.05 1.1 1.15 1.2 1.25
t

-1

-0.8

-0.6

-0.4

-0.2

w

FIG. 12. The parameter of acceleration qðtÞ (left panel) and the equation of state parameter !ðtÞ (right panel) for the scale factor in
Fig. 11.
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frame (5.1) and in the Brans-Dicke frame are related as
follows:

�dt 	 dtþ a2ðtÞd~x 	 d~x

¼ f0½�d�t 	 d�tþ �a2ð�tÞd~x 	 d~x�; (A1)

where f0 ¼ X þ 1> 0 and X is parametrized by Eq. (5.3).
Therefore, for the synchronous times and scale factors in
both frames we obtain, correspondingly,

d�t ¼ dt=
ffiffiffiffiffiffiffiffiffiffi
f0ðtÞ

q
; (A2)

�að�tÞ ¼ aðtð�tÞÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f0ðtð�tÞÞ

q
; (A3)

which lead to the following equations:

�t ¼
Z t

1

dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XðtÞ þ 1

p þ 1; (A4)

where we choose the constant of integration in such a way
that �tðt ¼ 1Þ ¼ 1, and

�Hð�tÞ ¼ d �a

d�t

1

�a

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xðtð�tÞÞþ 1

p �
Hðtð�tÞÞ� 1

2ðXðtð�tÞÞ þ 1Þ
dX

dt
ðtð�tÞÞ

�
:

(A5)

From the latter equation, we get the relation between the
Hubble parameters in both frames. We plot in Fig. 13 the
logarithms of the scale factor �að�tÞ and the Hubble parame-
ter �Hð�tÞ for the trajectory drawn in Fig. 7. These pictures
clearly demonstrate that in the Brans-Dicke frame the
Universe also has an asymptotical de Sitter stage when
the scalaron field approaches the branching point � ¼ 2�.
It is not difficult to verify that because Xðt ! þ1Þ ! Xmax

and dX=dtðt ! þ1Þ ! 0; we obtain the following rela-
tion for the asymptotic values of the Hubble parameters in
both frames:

�H ¼ H
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xmax þ 1

p
: (A6)
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