100 research outputs found

    Dark matter from dark energy-baryonic matter couplings

    Full text link
    We present a scenario in which a scalar field dark energy is coupled to the trace of the energy momentum tensor of the baryonic matter fields. In the slow-roll regime, this interaction could give rise to the cosmological features of dark matter. We work out the cosmological background solutions and fit the parameters of the model using the Union 2 supernovae data set. Then, we develop the cosmological perturbations up to linear order, and we find that the perturbed variables have an acceptable behavior, in particular the density contrast of baryonic matter grows similar to that in the Λ\LambdaCDM model for a suitable choice of the strength parameter of the coupling.Comment: 10 pages, 8 figures, in this version small typos are corrected and it matches the published version in Phys. Rev. D15, January 201

    Remarks on a five-dimensional Kaluza-Klein theory of the massive Dirac monopole

    Full text link
    The Gross-Perry-Sorkin spacetime, formed by the Euclidean Taub-NUT space with the time trivially added, is the appropriate background of the Dirac magnetic monopole without an explicit mass term. One remarks that there exists a very simple five-dimensional metric of spacetimes carrying massive magnetic monopoles that is an exact solution of the vacuum Einstein equations. Moreover, the same isometry properties as the original Euclidean Taub-NUT space are preserved. This leads to an Abelian Kaluza-Klein theory whose metric appears as a combinations between the Gross-Perry-Sorkin and Schwarzschild ones. The asymptotic motion of the scalar charged test particles is discussed, now by accounting for the mixing between the gravitational and magnetic effects.Comment: 7 page

    The Power Spectrum in de Sitter Inflation, Revisited

    Get PDF
    We find that the amplitude of quantum fluctuations of the invariant de Sitter vacuum coincides exactly with that of the vacuum of a comoving observer for a massless scalar (inflaton) field. We propose redefining the actual physical power spectrum as the difference between the amplitudes of the above vacua. An inertial particle detector continues to observe the Gibbons-Hawking temperature. However, although the resulting power spectrum is still scale-free, its amplitude can be drastically reduced since now, instead of the Hubble's scale at the inflationary period, it is determined by the square of the mass of the inflaton fluctuation field.Comment: 4 page

    Particle creation in a Robertson-Walker Universe revisited

    Get PDF
    We reanalyze the problem of particle creation in a 3+1 spatially closed Robertson-Walker space-time. We compute the total number of particles produced by this non-stationary gravitational background as well as the corresponding total energy and find a slight discrepancy between our results and those recently obtained in the literatur

    Trace anomaly of the conformal gauge field

    Full text link
    The proposed by Bastianelli and van Nieuwenhuizen new method of calculations of trace anomalies is applied in the conformal gauge field case. The result is then reproduced by the heat equation method. An error in previous calculation is corrected. It is pointed out that the introducing gauge symmetries into a given system by a field-enlarging transformation can result in unexpected quantum effects even for trivial configurations.Comment: 9 pages, LaTeX file, BI-TP 93/3

    Inflation, Renormalization, and CMB Anisotropies

    Get PDF
    In single-field, slow-roll inflationary models, scalar and tensorial (Gaussian) perturbations are both characterized by a zero mean and a non-zero variance. In position space, the corresponding variance of those fields diverges in the ultraviolet. The requirement of a finite variance in position space forces its regularization via quantum field renormalization in an expanding universe. This has an important impact on the predicted scalar and tensorial power spectra for wavelengths that today are at observable scales. In particular, we find a non-trivial change in the consistency condition that relates the tensor-to-scalar ratio "r" to the spectral indices. For instance, an exact scale-invariant tensorial power spectrum, n_t=0, is now compatible with a non-zero ratio r= 0.12 +/- 0.06, which is forbidden by the standard prediction (r=-8n_t). Forthcoming observations of the influence of relic gravitational waves on the CMB will offer a non-trivial test of the new predictions.Comment: 4 pages, jpconf.cls, to appear in the Proceedings of Spanish Relativity Meeting 2009 (ERE 09), Bilbao (Spain

    One Loop Corrected Mode Functions for SQED during Inflation

    Full text link
    We solve the one loop effective scalar field equations for spatial plane waves in massless, minimally coupled scalar quantum electrodynamics on a locally de Sitter background. The computation is done in two different gauges: a non-de Sitter invariant analogue of Feynman gauge, and in the de Sitter invariant, Lorentz gauge. In each case our result is that the finite part of the conformal counterterm can be chosen so that the mode functions experience no significant one loop corrections at late times. This is in perfect agreement with a recent, all orders stochastic prediction.Comment: 26 pages, uses LaTeX 2 epsilon, no figures, version 2 has an updated reference lis

    Entanglement of Dirac fields in non-inertial frames

    Full text link
    We analyze the entanglement between two modes of a free Dirac field as seen by two relatively accelerated parties. The entanglement is degraded by the Unruh effect and asymptotically reaches a non-vanishing minimum value in the infinite acceleration limit. This means that the state always remains entangled to a degree and can be used in quantum information tasks, such as teleportation, between parties in relative uniform acceleration. We analyze our results from the point of view afforded by the phenomenon of entanglement sharing and in terms of recent results in the area of multi-qubit complementarity.Comment: 15 pages, with 8 figures (Mar 2006); accepted to Physical Review A, July 2006 - slightly revise

    Is life a thermal horizon ?

    Full text link
    This talk aims at questioning the vanishing of Unruh temperature for an inertial observer in Minkovski spacetime with finite lifetime, arguing that in the non eternal case the existence of a causal horizon is not linked to the non-vanishing of the acceleration. This is illustrated by a previous result, the diamonds temperature, that adapts the algebraic approach of Unruh effect to the finite case.Comment: Proceedings of the conference DICE 2006, Piombino september 200

    Quantum Fields in an Expanding Universe

    Get PDF
    We extend our analysis for scalar fields in a Robertson-Walker metric to the electromagnetic field and Dirac fields by the method of invariants. The issue of the relation between conformal properties and particle production is re-examined and it is verified that the electromagnetic and massless spinor actions are conformal invariant, while the massless conformally coupled scalar field is not. For the scalar field case it is pointed out that the violation of conformal simmetry due to surface terms, although ininfluential for the equation of motion, does lead to effects in the quantized theory.Comment: 15 pp, no figures, accepted for publication in Class. Quantum Gra
    corecore