1,756 research outputs found

    Slow Coarsening in a Class of Driven Systems

    Full text link
    The coarsening process in a class of driven systems is studied. These systems have previously been shown to exhibit phase separation and slow coarsening in one dimension. We consider generalizations of this class of models to higher dimensions. In particular we study a system of three types of particles that diffuse under local conserving dynamics in two dimensions. Arguments and numerical studies are presented indicating that the coarsening process in any number of dimensions is logarithmically slow in time. A key feature of this behavior is that the interfaces separating the various growing domains are smooth (well approximated by a Fermi function). This implies that the coarsening mechanism in one dimension is readily extendible to higher dimensions.Comment: submitted to EPJB, 13 page

    Process evaluation for organizational stress and well-being interventions: Implications for theory, method, and practice.

    Get PDF
    Although the body of evidence showing the effects of psychosocial risks on employees’ health is substantial, effective and sustainable stress prevention remains a thorny and complex issue. Most studies have focused on evaluating the effects of organizational interventions, and the results are mixed. Researchers find the evaluation of such actions methodologically challenging whereas practitioners often find the development and implementation of such actions a complicated matter. One of the reasons for this mixed impact is the lack of attention to contextual and process issues, namely how, when, and why interventions have their effects on outcomes such as mental health, well-being, and organizational performance. This paper aims to help researchers and practitioners to improve the development, implementation, and evaluation of organizational initiatives designed to reduce exposure to stress, to promote well-being, and healthy organizations. We review recent developments in the literature on process evaluation and propose examples of broader theoretical frameworks that could be used to improve this area. We articulate the essential elements for developing and bridging gaps between theory, methods, and practice. Throughout, we provide recommendations for the content, process and reporting of research on IPE

    Structure de l’écoulement tridimensionnel, turbulence et contrainte de cisaillement dans une boucle de méandre

    Get PDF
    Plusieurs facteurs contribuent à l’instabilité des berges dans les méandres, mais le rôle joué par la dynamique de l’écoulement complexe au sein de ces sites n’est pas clairement élucidé. L’objectif de cette recherche est d’examiner la dynamique de l’écoulement tridimensionnel (3D) d’une boucle de méandre en vue de déterminer les liens entre la structure de l’écoulement moyen et turbulent, la contrainte de cisaillement et l’érosion des berges. Des données de vitesse 3D ont été recueillies dans une boucle de méandre avec un vélocimètre acoustique Doppler (ADV) et un profileur acoustique Doppler conçu pour les rivières peu profondes (PC-ADP). Une comparaison entre ces deux appareils a révélé que le PC-ADP donne de bons estimés de vitesse moyenne dans un écoulement relativement simple (au centre du chenal), mais le problème de moyennage spatial le rend moins efficace dans un plan de mélange où l’écoulement est plus complexe. L’ADV est aussi supérieur au PC-ADP pour les estimés de contrainte de cisaillement et l’étude de la turbulence à petite échelle, mais ce dernier révèle mieux les patrons à grande échelle. Deux cellules d’écoulement secondaire dans le méandre ressortent nettement avec les mesures simultanées du PC-ADP. Les maxima de contrainte de cisaillement mesurée avec l’ADV par la méthode d’énergie turbulente cinétique sont situés à l’entrée du méandre lorsque le niveau est plus bas, et à la sortie du méandre lorsque le niveau augmente. Ces deux zones correspondent à des observations de décrochement de berge au site d’étude.Many factors contribute to bank instability in meanders, but the exact role played by the complex flow dynamics is not very well understood. The objective of this research is to examine the three-dimensional (3D) flow dynamics in a meander loop to determine the links between the mean and turbulent flow structure, and bank erosion. 3D velocity data were collected in a meander loop with an acoustic Doppler velocimeter (ADV) and a pulse-coherent acoustic Doppler profiler (PC-ADP). A comparison between these two devices revealed that the PC-ADP provides accurate estimates of mean velocity in a relatively simple flow (in the centre of the channel), but that it is less efficient in a complex flow field with a mixing zone due to spatial averaging problems. The ADV is also better than the PC-ADP for bed shear stress estimates and for small-scale turbulence studies, but the latter reveals large-scale structures efficiently. Two secondary cells in the meander loop are clearly seen from the simultaneous PC-ADP measurements. The maximum values of bed shear stress measured with the ADV with the turbulent kinetic energy method are located at the meander entrance when flow stage is low, and at the meander exit when flow stage increases. These two zones correspond to observations of bank failure events at the field site

    Endosymbiotic chloroplasts in molluscan cells contain proteins synthesized after plastid capture

    Get PDF

    Algebraic analysis of quantum search with pure and mixed states

    Full text link
    An algebraic analysis of Grover's quantum search algorithm is presented for the case in which the initial state is an arbitrary pure quantum state of n qubits. This approach reveals the geometrical structure of the quantum search process, which turns out to be confined to a four-dimensional subspace of the Hilbert space. This work unifies and generalizes earlier results on the time evolution of the amplitudes during the quantum search, the optimal number of iterations and the success probability. Furthermore, it enables a direct generalization to the case in which the initial state is a mixed state, providing an exact formula for the success probability.Comment: 13 page

    A scalable method for automatically measuring pharyngeal pumping in C. elegans

    Get PDF
    Background: The nematode Caenorhabditis elegans is widely used for studying small neural circuits underlying behavior. In particular, the rhythmic feeding motions collectively termed pharyngeal pumping are regulated by a nearly autonomous network of 20 neurons of 14 types. Despite much progress achieved through laser ablation, genetics, electrophysiology, and optogenetics, key questions regarding the regulation of pumping remain open. New method: We describe the implementation and application of a scalable automated method for measuring pumping in controlled environments. Our implementation is affordable and flexible: key hardware and software elements can be modified to accommodate different requirements. Results: We demonstrate prolonged measurements under controlled conditions and the resulting high quality data. We show the scalability of our method, enabling high throughput, and its suitability for maintaining static and dynamic conditions. When food availability was oscillated, pumping rates were low as compared to steady conditions and pumping activity was not reliably modulated in response to changes in food concentration. Comparison with existing method: The prevailing method for measuring rates of pumping relies on scoring by visual inspection of short recordings. Our automated method compares well with manual scoring. It enables detailed statistical characterization under experimental conditions not previously accessible and minimizes unintentional bias. Conclusions: Our approach adds a powerful tool for studying pharyngeal pumping. It enhances the experimental versatility of assaying genetic and pharmacological manipulations and the ability to characterize the resulting behavior. Both the experimental setup and the analysis can be readily adapted to additional challenging motion detection problems

    Sickness presenteeism determines job satisfaction via affective-motivational states

    Get PDF
    Research on the consequences of sickness presenteeism, or the phenomenon of attending work whilst ill, has focused predominantly on identifying its economic, health, and absenteeism outcomes, neglecting important attitudinal-motivational outcomes. A mediation model of sickness presenteeism as a determinant of job satisfaction via affective-motivational states (specifically engagement with work and addiction to work) is proposed. This model adds to the current literature, by focusing on (i) job satisfaction as an outcome of presenteeism, and (ii) the psychological processes associated with this. It posits presenteeism as psychological absence and work engagement and work addiction as motivational states that originate in that. An online survey was completed by 158 office workers on sickness presenteeism, work engagement, work addiction, and job satisfaction. The results of bootstrapped mediation analysis with observable variables supported the model. Sickness presenteeism was negatively associated with job satisfaction. This relationship was fully mediated by both engagement with work and addiction to work, explaining a total of 48.07% of the variance in job satisfaction. Despite the small sample, the data provide preliminary support for the model. Given that there is currently no available research on the attitudinal consequences of presenteeism, these findings offer promise for advancing theorising in this area

    Towards precision medicine for hypertension: a review of genomic, epigenomic, and microbiomic effects on blood pressure in experimental rat models and humans

    Get PDF
    Compelling evidence for the inherited nature of essential hypertension has led to extensive research in rats and humans. Rats have served as the primary model for research on the genetics of hypertension resulting in identification of genomic regions that are causally associated with hypertension. In more recent times, genome-wide studies in humans have also begun to improve our understanding of the inheritance of polygenic forms of hypertension. Based on the chronological progression of research into the genetics of hypertension as the "structural backbone," this review catalogs and discusses the rat and human genetic elements mapped and implicated in blood pressure regulation. Furthermore, the knowledge gained from these genetic studies that provide evidence to suggest that much of the genetic influence on hypertension residing within noncoding elements of our DNA and operating through pervasive epistasis or gene-gene interactions is highlighted. Lastly, perspectives on current thinking that the more complex "triad" of the genome, epigenome, and the microbiome operating to influence the inheritance of hypertension, is documented. Overall, the collective knowledge gained from rats and humans is disappointing in the sense that major hypertension-causing genes as targets for clinical management of essential hypertension may not be a clinical reality. On the other hand, the realization that the polygenic nature of hypertension prevents any single locus from being a relevant clinical target for all humans directs future studies on the genetics of hypertension towards an individualized genomic approach
    • …
    corecore