196 research outputs found

    Carbon monoxide and water vapor in the atmosphere of the non-transiting exoplanet HD 179949 b

    Get PDF
    (Abridged) In recent years, ground-based high-resolution spectroscopy has become a powerful tool for investigating exoplanet atmospheres. It allows the robust identification of molecular species, and it can be applied to both transiting and non-transiting planets. Radial-velocity measurements of the star HD 179949 indicate the presence of a giant planet companion in a close-in orbit. Here we present the analysis of spectra of the system at 2.3 micron, obtained at a resolution of R~100,000, during three nights of observations with CRIRES at the VLT. We targeted the system while the exoplanet was near superior conjunction, aiming to detect the planet's thermal spectrum and the radial component of its orbital velocity. We detect molecular absorption from carbon monoxide and water vapor with a combined S/N of 6.3, at a projected planet orbital velocity of K_P = (142.8 +- 3.4) km/s, which translates into a planet mass of M_P = (0.98 +- 0.04) Jupiter masses, and an orbital inclination of i = (67.7 +- 4.3) degrees, using the known stellar radial velocity and stellar mass. The detection of absorption features rather than emission means that, despite being highly irradiated, HD 179949 b does not have an atmospheric temperature inversion in the probed range of pressures and temperatures. Since the host star is active (R_HK > -4.9), this is in line with the hypothesis that stellar activity damps the onset of thermal inversion layers owing to UV flux photo-dissociating high-altitude, optical absorbers. Finally, our analysis favors an oxygen-rich atmosphere for HD 179949 b, although a carbon-rich planet cannot be statistically ruled out based on these data alone.Comment: 10 pages, 9 figures. Accepted for publication in Astronomy and Astrophysic

    Detection of water absorption in the day side atmosphere of HD 189733 b using ground-based high-resolution spectroscopy at 3.2 microns

    Get PDF
    We report a 4.8 sigma detection of water absorption features in the day side spectrum of the hot Jupiter HD 189733 b. We used high-resolution (R~100,000) spectra taken at 3.2 microns with CRIRES on the VLT to trace the radial-velocity shift of the water features in the planet's day side atmosphere during 5 h of its 2.2 d orbit as it approached secondary eclipse. Despite considerable telluric contamination in this wavelength regime, we detect the signal within our uncertainties at the expected combination of systemic velocity (Vsys=-3 +5-6 km/s) and planet orbital velocity (Kp=154 +14-10 km/s), and determine a H2O line contrast ratio of (1.3+/-0.2)x10^-3 with respect to the stellar continuum. We find no evidence of significant absorption or emission from other carbon-bearing molecules, such as methane, although we do note a marginal increase in the significance of our detection to 5.1 sigma with the inclusion of carbon dioxide in our template spectrum. This result demonstrates that ground-based, high-resolution spectroscopy is suited to finding not just simple molecules like CO, but also to more complex molecules like H2O even in highly telluric contaminated regions of the Earth's transmission spectrum. It is a powerful tool that can be used for conducting an immediate census of the carbon- and oxygen-bearing molecules in the atmospheres of giant planets, and will potentially allow the formation and migration history of these planets to be constrained by the measurement of their atmospheric C/O ratios.Comment: 5 pages, 4 figures, accepted for publication in MNRAS Letter

    Detection of the secondary eclipse of Qatar-1b in the Ks band

    Full text link
    Qatar-1b is a close-orbiting hot Jupiter (Rp1.18R_p\simeq 1.18 RJR_J, Mp1.33M_p\simeq 1.33 MJM_J) around a metal-rich K-dwarf, with orbital separation and period of 0.023 AU and 1.42 days. We have observed the secondary eclipse of this exoplanet in the Ks band with the objective of deriving a brightness temperature for the planet and providing further constraints to the orbital configuration of the system. We obtained near-infrared photometric data from the ground by using the OMEGA2000 instrument at the 3.5 m telescope at Calar Alto (Spain) in staring mode, with the telescope defocused. We have used principal component analysis (PCA) to identify correlated systematic trends in the data. A Markov chain Monte Carlo analysis was performed to model the correlated systematics and fit for the secondary eclipse of Qatar-1b using a previously developed occultation model. We adopted the prayer bead method to assess the effect of red noise on the derived parameters. We measured a secondary eclipse depth of 0.196%0.051%+0.071%0.196\%^{+0.071\%}_{-0.051\%}, which indicates a brightness temperature in the Ks band for the planet of 1885168+2121885^{+212}_{-168} K. We also measured a small deviation in the central phase of the secondary eclipse of 0.00790.0043+0.0162-0.0079^{+0.0162}_{-0.0043}, which leads to a value for ecosωe\cos{\omega} of 0.01230.0067+0.0252-0.0123^{+0.0252}_{-0.0067}. However, this last result needs to be confirmed with more data.Comment: 6 pages, 6 figures, accepted for publication in A&

    Detection of carbon monoxide in the high-resolution day-side spectrum of the exoplanet HD 189733b

    Get PDF
    [Abridged] After many attempts over more than a decade, high-resolution spectroscopy has recently delivered its first detections of molecular absorption in exoplanet atmospheres, both in transmission and thermal emission spectra. Targeting the combined signal from individual lines in molecular bands, these measurements use variations in the planet radial velocity to disentangle the planet signal from telluric and stellar contaminants. In this paper we apply high resolution spectroscopy to probe molecular absorption in the day-side spectrum of the bright transiting hot Jupiter HD 189733b. We observed HD 189733b with the CRIRES high-resolution near-infrared spectograph on the Very Large Telescope during three nights. We detect a 5-sigma absorption signal from CO at a contrast level of ~4.5e-4 with respect to the stellar continuum, revealing the planet orbital radial velocity at 154+4/-3 km s-1. This allows us to solve for the planet and stellar mass in a similar way as for stellar eclipsing binaries, resulting in Ms= 0.846+0.068/-0.049 Msun and Mp= 1.162+0.058/-0.039 MJup. No significant absorption is detected from H2O, CO2 or CH4 and we determined upper limits on their line contrasts here. The detection of CO in the day-side spectrum of HD 189733b can be made consistent with the haze layer proposed to explain the optical to near-infrared transmission spectrum if the layer is optically thin at the normal incidence angles probed by our observations, or if the CO abundance is high enough for the CO absorption to originate from above the haze. Our non-detection of CO2 at 2.0 micron is not inconsistent with the deep CO2 absorption from low resolution NICMOS secondary eclipse data in the same wavelength range. If genuine, the absorption would be so strong that it blanks out any planet light completely in this wavelength range, leaving no high-resolution signal to be measured.Comment: A&A, accepted for publication. Fig.1 reduced in qualit

    J-band variability of M dwarfs in the WFCAM Transit Survey

    Get PDF
    We present an analysis of the photometric variability of M dwarfs in the Wide Field Camera (WFCAM) Transit Survey. Although periodic light-curve variability in low mass stars is generally dominated by photospheric star spot activity, M dwarf variability in the J band has not been as thoroughly investigated as at visible wavelengths. Spectral type estimates for a sample of over 200 000 objects are made using spectral type-colour relations, and over 9600 dwarfs (J 0.2 mag flaring event from an M4V star in our sample.Peer reviewe

    Searching for transits in the Wide Field Camera Transit Survey with difference-imaging light curves

    Get PDF
    The Wide Field Camera Transit Survey is a pioneer program aiming at for searching extra-solar planets in the near-infrared. The images from the survey are processed by a data reduction pipeline, which uses aperture photometry to construct the light curves. We produce an alternative set of light curves using the difference-imaging method for the most complete field in the survey and carry out a quantitative comparison between the photometric precision achieved with both methods. The results show that differencephotometry light curves present an important improvement for stars with J > 16. We report an implementation on the box-fitting transit detection algorithm, which performs a trapezoid-fit to the folded light curve, providing more accurate results than the boxfitting model. We describe and optimize a set of selection criteria to search for transit candidates, including the V-shape parameter calculated by our detection algorithm. The optimized selection criteria are applied to the aperture photometry and difference-imaging light curves, resulting in the automatic detection of the best 200 transit candidates from a sample of ~475 000 sources. We carry out a detailed analysis in the 18 best detections and classify them as transiting planet and eclipsing binary candidates. We present one planet candidate orbiting a late G-type star. No planet candidate around M-stars has been found, confirming the null detection hypothesis and upper limits on the occurrence rate of short-period giant planets around M-dwarfs presented in a prior study. We extend the search for transiting planets to stars with J ≤ 18, which enables us to set a stricter upper limit of 1.1%. Furthermore, we present the detection of five faint extremely-short period eclipsing binaries and three M-dwarf/M-dwarf binary candidates. The detections demonstrate the benefits of using the difference-imaging light curves, especially when going to fainter magnitudes.Peer reviewe

    Detection of the secondary eclipse of WASP-10b in the Ks-band

    Full text link
    WASP-10b, a non-inflated hot Jupiter, was discovered around a K-dwarf in a near circular orbit (\sim 0.060.06). Since its discovery in 2009, different published parameters for this system have led to a discussion about the size, density, and eccentricity of this exoplanet. In order to test the hypothesis of a circular orbit for WASP-10b, we have observed its secondary eclipse in the Ks-band, where the contribution of planetary light is high enough to be detected from the ground. Observations were performed with the OMEGA2000 instrument at the 3.5-meter telescope at Calar Alto (Almer\'ia, Spain), in staring mode during 5.4 continuous hours, with the telescope defocused, monitoring the target during the expected secondary eclipse. A relative light curve was generated and corrected from systematic effects, using the Principal Component Analysis (PCA) technique. The final light curve was fitted using a transit model to find the eclipse depth and a possible phase shift. The best model obtained from the Markov Chain Monte Carlo analysis resulted in an eclipse depth of ΔF\Delta F of 0.137%0.019%+0.013%0.137\%^{+0.013\%}_{-0.019\%} and a phase offset of Δϕ\Delta \phi of 0.00280.0004+0.0005-0.0028^{+0.0005}_{-0.0004}. The eclipse phase offset derived from our modeling has systematic errors that were not taken into account and should not be considered as evidence of an eccentric orbit. The offset in phase obtained leads to a value for ecosω|e\cos{\omega}| of 0.00440.0044. The derived eccentricity is too small to be of any significance.Comment: 8 pages, 10 figure
    corecore