33 research outputs found

    Phenylketonuria in Portugal: Genotype-Phenotype Correlations Using Molecular, Biochemical, and Haplotypic Analyses

    Get PDF
    The impairment of the hepatic enzyme phenylalanine hydroxylase (PAH) causes elevation of phenylalanine levels in blood and other body fluids resulting in the most common inborn error of amino acid metabolism (phenylketonuria). Persistently high levels of phenylalanine lead to irreversible damage to the nervous system. Therefore, early diagnosis of the affected individuals is important, as it can prevent clinical manifestations of the disease.info:eu-repo/semantics/publishedVersio

    Lipid (per) oxidation in mitochondria:an emerging target in the ageing process?

    Get PDF
    Lipids are essential for physiological processes such as maintaining membrane integrity, providing a source of energy and acting as signalling molecules to control processes including cell proliferation, metabolism, inflammation and apoptosis. Disruption of lipid homeostasis can promote pathological changes that contribute towards biological ageing and age-related diseases. Several age-related diseases have been associated with altered lipid metabolism and an elevation in highly damaging lipid peroxidation products; the latter has been ascribed, at least in part, to mitochondrial dysfunction and elevated ROS formation. In addition, senescent cells, which are known to contribute significantly to age-related pathologies, are also associated with impaired mitochondrial function and changes in lipid metabolism. Therapeutic targeting of dysfunctional mitochondrial and pathological lipid metabolism is an emerging strategy for alleviating their negative impact during ageing and the progression to age-related diseases. Such therapies could include the use of drugs that prevent mitochondrial uncoupling, inhibit inflammatory lipid synthesis, modulate lipid transport or storage, reduce mitochondrial oxidative stress and eliminate senescent cells from tissues. In this review, we provide an overview of lipid structure and function, with emphasis on mitochondrial lipids and their potential for therapeutic targeting during ageing and age-related disease

    Lake sediment fecal and biomass burning biomarkers provide direct evidence for prehistoric human-lit fires in New Zealand

    Get PDF
    Deforestation associated with the initial settlement of New Zealand is a dramatic example of how humans can alter landscapes through fire. However, evidence linking early human presence and land-cover change is inferential in most continental sites. We employed a multi-proxy approach to reconstruct anthropogenic land use in New Zealand’s South Island over the last millennium using fecal and plant sterols as indicators of human activity and monosaccharide anhydrides, polycyclic aromatic hydrocarbons, charcoal and pollen as tracers of fire and vegetation change in lake-sediment cores. Our data provide a direct record of local human presence in Lake Kirkpatrick and Lake Diamond watersheds at the time of deforestation and a new and stronger case of human agency linked with forest clearance. The first detection of human presence matches charcoal and biomarker evidence for initial burning at c. AD 1350. Sterols decreased shortly after to values suggesting the sporadic presence of people and then rose to unprecedented levels after the European settlement. Our results confirm that initial human arrival in New Zealand was associated with brief and intense burning activities. Testing our approach in a context of well-established fire history provides a new tool for understanding cause-effect relationships in more complex continental reconstructions

    Changes in Doppler‐Derived Kidney Venous Flow and Adverse Cardiorenal Outcomes in Patients With Heart Failure

    No full text
    Background The impact of changes in Doppler‐derived kidney venous flow in heart failure (HF) is not well studied. We aimed to investigate the association of Doppler‐derived kidney venous stasis index (KVSI) and intrakidney venous‐flow (IKVF) patterns with adverse cardiorenal outcomes in patients with HF. Methods and Results In this observational cohort study, consecutive inpatients with HF referred to a nephrologist because of a history of diuretic resistance and abnormal kidney function (n=216) underwent spectral kidney assessments after admission (Doppler 1) and 25 to 35 days later (Doppler 2) to identify IKVF patterns (continuous/pulsatile/biphasic/monophasic) and KVSI levels. Cox proportional hazard regression models were used to evaluate the associations between KVSI/IKVF patterns at Doppler 1 as well as changes from Doppler 1 to Doppler 2 and risk of cardiorenal events up to 18 months after admission. Worsening HF or death occurred in 126 patients. Both baseline KVSI (hazard ratio [HR], 1.49 [95% CI, 1.37–1.61] per 0.1‐unit increase) and baseline IKVF pattern (HR, 2.47 [95% CI, 2.01–3.04] per 1 pattern severity increase) were significantly associated with worsening HF/death. Increases in both KVSI and IKVF pattern severity from Doppler 1 to 2 were also associated with an increased risk of worsening HF/death (HR, 3.00 [95% CI, 2.08–4.32] per 0.1‐unit increase change; and HR, 6.73 [95% CI, 3.27–13.86] per 1 pattern increase in severity change, respectively). Similar results were observed for kidney outcomes. Conclusions Baseline kidney venous flow predicted adverse cardiorenal events, and inclusion of serial kidney venous flow in cardiorenal risk stratification could facilitate clinical decision‐making for patients with HF. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT03039959
    corecore