79 research outputs found

    Estructura genética de årboles forestales en regiones de alta biodiversidad a diferentes escalas espaciales

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Biológicas, Departamento de Genética, leída el 09-05-2014. Tesis formato europeo (Compendio de artículos)Depto. de Genética, Fisiología y MicrobiologíaFac. de Ciencias BiológicasTRUEunpu

    Genetic diversity and fine-scale spatial genetic structure of the near-threatened Pinus gerardiana in Gardiz, Afghanistan

    Get PDF
    Background and aims – Chilgoza pine (Pinus gerardiana) is a near-threatened tree species from the north-western Himalayas. This species is the economically most important pine in Afghanistan because of its edible nuts; however, its distribution range is disjunct and restricted to a few isolated regions. The IUCN lists Chilgoza as a near threatened species because of overexploitation of its nuts and a declining population trend. This research is the first in-depth analysis of the genetic variability and structure of Chilgoza in Afghanistan using microsatellite markers. Material and methods –We tested cross-amplification of 44 SSR markers developed for pine species. Eight polymorphic EST-SSRs were genotyped in a natural Chilgoza population in Gardiz, Afghanistan. To evaluate the genetic diversity, fine-scale spatial genetic structure (SGS), signatures of bottleneck events, and the effective population size, 191 trees were sampled and genotyped. Based on the diameter at breast height, individuals were classified as young or old trees. Key results – Genetic variation in the whole population was moderate. For individual markers, He ranged from 0.130 to 0.515 (mean = 0.338) and Ho from 0.118 to 0.542 (mean = 0.328). The expected heterozygosity in young trees was slightly lower than in old trees. The SGS was stronger for young trees (Sp = 0.0100) than for old trees (Sp = 0.0029). Heterozygosity excess analysis detected no recent population size reduction, but the M ratio revealed an ancient and prolonged bottleneck in the Chilgoza population. Conclusion – Identification of suitable EST-SSRs for future studies of natural Chilgoza populations provides important tools for the conservation of the species. Despite the moderate genetic variation in Gardiz, scarcity of natural regeneration is likely to reduce the genetic variation and adaptability in future generations. Our results indicated a slight decrease in genetic diversity and stronger SGS in young trees calling for conservation measures fostering natural regeneration

    Divergent selection in a Mediterranean pine on local spatial scales

    Get PDF
    1. The effects of selection on an organism's genome are hard to detect on small spatial scales, as gene flow can swamp signatures of local adaptation. Therefore, most genome scans to detect signatures of environmental selection are performed on large spatial scales; however, divergent selection on the local scale (e.g. between contrasting soil conditions) has also been demonstrated, in particular for herbaceous plants. 2. Here, we hypothesised that in topographically complex landscapes, microenvironment variability is strong enough to leave a selective footprint in the genomes of long-lived organisms. To test this, we investigated paired south- versus north-facing Pinus pinaster stands on the local scale, with trees growing in close vicinity (≀820 m distance between paired south- and north-facing stands), in a Mediterranean mountain area. While trees on north-facing slopes experience less radiation, trees on south-facing slopes suffer from especially harsh conditions, particularly during the dry summer season. 3. Two outlier analyses consistently revealed five putatively adaptive loci (out of 4034), in candidate genes two of which encoded non-synonymous substitutions. Additionally, one locus showed consistent allele frequency differences in all three stand pairs indicating divergent selection despite high gene flow on the local scale. Permutation tests demonstrated that our findings were robust. 4. Functional annotation of these candidate genes revealed biological functions related to abiotic stress response, such as water availability, in other plant species. 5. Synthesis. Our study highlights how divergent selection in heterogeneous microenvironments shapes and maintains the functional genetic variation within populations of long-lived forest tree species, being the first to focus on adaptive genetic divergence between south- and north-facing slopes within continuous forest stands. This is especially relevant in the current context of climate change, as this variation is at the base of plant population responses to future climate.European Commission http://dx.doi.org/10.13039/501100000780European Science Foundation http://dx.doi.org/10.13039/501100000782Spanish Ministry of Science and Innovation http://dx.doi.org/10.13039/501100004837University of BrodeauxPeer Reviewe

    Predictors of graft survival at diagnosis of antibody‐mediated renal allograft rejection: a retrospective single‐center cohort study

    Get PDF
    Antibody-mediated rejection (ABMR) is a major cause of graft loss in renal transplantation. We assessed the predictive value of clinical, pathological, and immunological parameters at diagnosis for graft survival. We investigated 54 consecutive patients with biopsy-proven ABMR. Patients were treated according to our current standard regimen followed by triple maintenance immunosuppression. Patient characteristics, renal function, and HLA antibody status at diagnosis, baseline biopsy results, and immunosuppressive treatment were recorded. The risk of graft loss at 24 months after diagnosis and the eGFR slope were assessed. Multivariate analysis showed that eGFR at diagnosis and chronic glomerulopathy independently predict graft loss (HR 0.94; P = 0.018 and HR 1.57; P = 0.045) and eGFR slope (beta 0.46; P < 0.001). Cyclophosphamide treatment (6x 15 mg/mÂČ) plus high-dose intravenous immunoglobulins (IVIG) (1.5 g/kg) was superior compared with single-dose rituximab (1x 500 mg) plus low-dose IVIG (30 g) (HR 0.10; P = 0.008 and beta 10.70; P = 0.017) and one cycle of bortezomib (4x 1.3 mg/m(2)) plus low-dose IVIG (HR 0.16; P = 0.049 and beta 11.21; P = 0.010) regarding the risk of graft loss and the eGFR slope. In conclusion, renal function at diagnosis and histopathological signs of chronic ABMR seem to predict graft survival independent of the applied treatment regimen. Stepwise modifications of the treatment regimen may help to improve outcome

    Modifier genes in microcephaly: A report on WDR62, CEP63, RAD50 and PCNT variants exacerbating disease caused by biallelic mutations of ASPM and CENPJ

    Get PDF
    Congenital microcephaly is the clinical presentation of significantly reduced head circumference at birth. It manifests as both non-syndromic-microcephaly primary hereditary (MCPH)-and syndromic forms and shows considerable inter- and intrafamilial variability. It has been hypothesized that additional genetic variants may be responsible for this variability, but data are sparse. We have conducted deep phenotyping and genotyping of five Pakistani multiplex families with either MCPH (n = 3) or Seckel syndrome (n = 2). In addition to homozygous causal variants in ASPM or CENPJ, we discovered additional heterozygous modifier variants in WDR62, CEP63, RAD50 and PCNT-genes already known to be associated with neurological disorders. MCPH patients carrying an additional heterozygous modifier variant showed more severe phenotypic features. Likewise, the phenotype of Seckel syndrome caused by a novel CENPJ variant was aggravated to microcephalic osteodysplastic primordial dwarfism type II (MOPDII) in conjunction with an additional PCNT variant. We show that the CENPJ missense variant impairs splicing and decreases protein expression. We also observed centrosome amplification errors in patient cells, which were twofold higher in MOPDII as compared to Seckel cells. Taken together, these observations advocate for consideration of additional variants in related genes for their role in modifying the expressivity of the phenotype and need to be considered in genetic counseling and risk assessment

    The relationship between proteinuria and allograft survival in patients with transplant glomerulopathy: a retrospective single‐center cohort study

    Get PDF
    Proteinuria and transplant glomerulopathy (TG) are common in kidney transplantation. To date, there is limited knowledge regarding proteinuria in different types of TG and its relationship to allograft survival. A retrospective cohort analysis of TG patients from indication biopsies was performed to investigate the relationship of proteinuria, histology, and graft survival. One hundred and seven (57.5%) out of 186 TG patients lost their grafts with a median survival of 14 [95% confidence interval (CI) 10-22] months after diagnosis. Proteinuria ≄ 1 g/24 h at the time of biopsy was detected in 87 patients (46.8%) and the median of proteinuria was 0.89 (range 0.05-6.90) g/24 h. TG patients with proteinuria ≄ 1 g/24 h had worse 5-year graft survival (29.9% vs. 53.5%, P = 0.001) compared with proteinuria <1 g/24 h. Proteinuria was associated with graft loss in univariable Cox regression [hazard ratio (HR) 1.25, 95% CI, 1.11-1.41, P < 0.001], and in multivariable analysis (adjusted HR 1.26, 95% CI 1.11-1.42, P < 0.001) independent of other risk factors including creatinine at biopsy, positive C4d, history of rejection, and Banff lesion score mesangial matrix expansion. In this cohort of TG patients, proteinuria at indication biopsy is common and associated with a higher proportion of graft loss

    The hyperdominant tropical tree <i>Eschweilera coriacea</i> (Lecythidaceae) shows higher genetic heterogeneity than sympatric Eschweilera species in French Guiana

    Get PDF
    International audienceBackground and aims – The evolutionary history of Amazonia’s hyperabundant tropical tree species, also known as “hyperdominant” species, remains poorly investigated. We assessed whether the hyperdominant Eschweilera coriacea (DC.) S.A.Mori (Lecythidaceae) represents a single genetically cohesive species, and how its genetic constitution relates to other species from the same clade with which it occurs sympatrically in French Guiana.Methods – We sampled 152 individuals in nine forest sites in French Guiana, representing 11 species of the genus Eschweilera all belonging to the Parvifolia clade, with emphasis on E. coriacea. Samples were genotyped at four simple sequence repeat (SSR) markers. We delimited gene pools, i.e., genetically coherent putative taxa, using STRUCTURE software and principal component analysis. We compared the genetic assignment of individuals with their morphological species determination and estimated genetic diversity and differentiation for gene pools and species. We also estimated genome size using flow cytometry.Key results – SSR profiles commonly displayed up to four alleles per genotype, suggesting that the investigated Eschweilera species bear a paleopolyploid signature. Flow cytometry suggested that the studied species are diploid with haploid genome sizes of 871–1046 Mbp. We detected five gene pools and observed a good correspondence between morphological and genetic delimitation for Eschweilera sagotiana Miers and the undescribed morphospecies E. sp. 3 (which resembles E. grandiflora (Aubl.) Sandwith), and to a lesser extent for E. decolorans Sandwith and E. micrantha (O.Berg) Miers. Eschweilera coriacea was the most genetically diverse species and included individuals assigned to each gene pool.Conclusions – We found no conclusive evidence for cryptic species within E. coriacea in French Guiana. SSRs detected fewer gene pools than expected based on morphology in the Parvifolia clade but discriminated evolutionary relationships better than available plastid markers. A positive trend between demographic abundance of species and allelic richness illustrates that hyperdominants may have a high evolutionary potential. This hypothesis can be tested using more powerful genomic data in combination with tree phenotypic trait variation and characterization of niche breadth, to enhance our understanding of the causes of hyperdominance in Amazonian trees

    Resilient forests for the future

    Get PDF
    Forest ecosystems are of global importance, ecologically, economically and culturally. However, despite their fundamental role in mitigating the worst effects of climate change, to date there have been surprisingly few resources devoted to defining, conserving and planning resilient forests for the future. Progress in this field of research, which requires international and interdisciplinary cooperation, collaboration and communication, was presented and discussed at the second biannual conference of the European Research Group, Evoltree (https://www.evoltree.eu). Over four days more than 140 scientists met to share developments and to discuss forest ecology, genetics, genomics and evolution with a focus on realising “Resilient Forests for the Future”. From examining evolutionary dynamics and using the past to understand future responses, to evaluating breeding approaches and the sustainable use of forest genetic resources, the conference addressed critical themes with relevance to this topic. The role of genomics in conservation, investigation of biotic interactions and identifying climate resilient forests were also explored. Finally, innovative methods and approaches which promise to increase the scale and speed with which forest evolutionary research can progress were introduced and evaluated. The Evoltree network and conference series provides invaluable opportunities to share knowledge and increase collaboration on forest genetic research, the need for which has never been greater or more urgent

    First report on an inotropic peptide activating tetrodotoxin-sensitive, "neuronal" sodium currents in the heart

    Get PDF
    Background— New therapeutic approaches to improve cardiac contractility without severe risk would improve the management of acute heart failure. Increasing systolic sodium influx can increase cardiac contractility, but most sodium channel activators have proarrhythmic effects that limit their clinical use. Here, we report the cardiac effects of a novel positive inotropic peptide isolated from the toxin of the Black Judean scorpion that activates neuronal tetrodotoxin-sensitive sodium channels. Methods and Results— All venoms and peptides were isolated from Black Judean Scorpions (Buthotus Hottentotta) caught in the Judean Desert. The full scorpion venom increased left ventricular function in sedated mice in vivo, prolonged ventricular repolarization, and provoked ventricular arrhythmias. An inotropic peptide (BjIP) isolated from the full venom by chromatography increased cardiac contractility but did neither provoke ventricular arrhythmias nor prolong cardiac repolarization. BjIP increased intracellular calcium in ventricular cardiomyocytes and prolonged inactivation of the cardiac sodium current. Low concentrations of tetrodotoxin (200 nmol/L) abolished the effect of BjIP on calcium transients and sodium current. BjIP did not alter the function of Nav 1.5 , but selectively activated the brain-type sodium channels Nav 1.6 or Nav 1.3 in cellular electrophysiological recordings obtained from rodent thalamic slices. Nav 1.3 (SCN3A) mRNA was detected in human and mouse heart tissue. Conclusions— Our pilot experiments suggest that selective activation of tetrodotoxin-sensitive neuronal sodium channels can safely increase cardiac contractility. As such, the peptide described here may become a lead compound for a new class of positive inotropic agents. </jats:sec

    Noncompaction of the Ventricular Myocardium Is Associated with a De Novo Mutation in the ÎČ-Myosin Heavy Chain Gene

    Get PDF
    Noncompaction of the ventricular myocardium (NVM) is the morphological hallmark of a rare familial or sporadic unclassified heart disease of heterogeneous origin. NVM results presumably from a congenital developmental error and has been traced back to single point mutations in various genes. The objective of this study was to determine the underlying genetic defect in a large German family suffering from NVM. Twenty four family members were clinically assessed using advanced imaging techniques. For molecular characterization, a genome-wide linkage analysis was undertaken and the disease locus was mapped to chromosome 14ptel-14q12. Subsequently, two genes of the disease interval, MYH6 and MYH7 (encoding the α- and ÎČ-myosin heavy chain, respectively) were sequenced, leading to the identification of a previously unknown de novo missense mutation, c.842G>C, in the gene MYH7. The mutation affects a highly conserved amino acid in the myosin subfragment-1 (R281T). In silico simulations suggest that the mutation R281T prevents the formation of a salt bridge between residues R281 and D325, thereby destabilizing the myosin head. The mutation was exclusively present in morphologically affected family members. A few members of the family displayed NVM in combination with other heart defects, such as dislocation of the tricuspid valve (Ebstein's anomaly, EA) and atrial septal defect (ASD). A high degree of clinical variability was observed, ranging from the absence of symptoms in childhood to cardiac death in the third decade of life. The data presented in this report provide first evidence that a mutation in a sarcomeric protein can cause noncompaction of the ventricular myocardium
    • 

    corecore