29 research outputs found

    Molecular biology of breast cancer metastasis Molecular expression of vascular markers by aggressive breast cancer cells

    Get PDF
    During embryogenesis, the formation of primary vascular networks occurs via the processes of vasculogenesis and angiogenesis. In uveal melanoma, vasculogenic mimicry describes the 'embryonic-like' ability of aggressive, but not nonaggressive, tumor cells to form networks surrounding spheroids of tumor cells in three-dimensional culture; these recapitulate the patterned networks seen in patients' aggressive tumors and correlates with poor prognosis. The molecular profile of these aggressive tumor cells suggests that they have a deregulated genotype, capable of expressing vascular phenotypes. Similarly, the embryonic-like phenotype expressed by the aggressive human breast cancer cells is associated with their ability to express a variety of vascular markers. These studies may offer new insights for consideration in breast cancer diagnosis and therapeutic intervention strategies

    Cytoplasmic TAF2-TAF8-TAF10 complex provides evidence for nuclear holo-TFIID assembly from preformed submodules

    Get PDF
    General transcription factor TFIID is a cornerstone of RNA polymerase II transcription initiation in eukaryotic cells. How human TFIID-a megadalton-sized multiprotein complex composed of the TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs)-assembles into a functional transcription factor is poorly understood. Here we describe a heterotrimeric TFIID subcomplex consisting of the TAF2, TAF8 and TAF10 proteins, which assembles in the cytoplasm. Using native mass spectrometry, we define the interactions between the TAFs and uncover a central role for TAF8 in nucleating the complex. X-ray crystallography reveals a non-canonical arrangement of the TAF8-TAF10 histone fold domains. TAF2 binds to multiple motifs within the TAF8 C-terminal region, and these interactions dictate TAF2 incorporation into a core-TFIID complex that exists in the nucleus. Our results provide evidence for a stepwise assembly pathway of nuclear holo-TFIID, regulated by nuclear import of preformed cytoplasmic submodules

    Structure of the archaeal pab87 peptidase reveals a novel self-compartmentalizing protease family.

    Get PDF
    Self-compartmentalizing proteases orchestrate protein turnover through an original architecture characterized by a central catalytic chamber. Here we report the first structure of an archaeal member of a new self-compartmentalizing protease family forming a cubic-shaped octamer with D(4) symmetry and referred to as CubicO. We solved the structure of the Pyrococcus abyssi Pab87 protein at 2.2 A resolution using the anomalous signal of the high-phasing-power lanthanide derivative Lu-HPDO3A. A 20 A wide channel runs through this supramolecular assembly of 0.4 MDa, giving access to a 60 A wide central chamber holding the eight active sites. Surprisingly, activity assays revealed that Pab87 degrades specifically d-amino acid containing peptides, which have never been observed in archaea. Genomic context of the Pab87 gene showed that it is surrounded by genes involved in the amino acid/peptide transport or metabolism. We propose that CubicO proteases are involved in the processing of d-peptides from environmental origins

    Pharmacology, efficacy and safety of oral phosphate binders

    No full text

    Globally asynchronous sulphur isotope signals require re-definition of the Great Oxidation Event

    No full text
    © 2018 The Author(s). The Great Oxidation Event (GOE) has been defined as the time interval when sufficient atmospheric oxygen accumulated to prevent the generation and preservation of mass-independent fractionation of sulphur isotopes (MIF-S) in sedimentary rocks. Existing correlations suggest that the GOE was rapid and globally synchronous. Here we apply sulphur isotope analysis of diagenetic sulphides combined with U-Pb and Re-Os geochronology to document the sulphur cycle evolution in Western Australia spanning the GOE. Our data indicate that, from ~2.45 Gyr to beyond 2.31 Gyr, MIF-S was preserved in sulphides punctuated by several episodes of MIF-S disappearance. These results establish the MIF-S record as asynchronous between South Africa, North America and Australia, argue for regional-scale modulation of MIF-S memory effects due to oxidative weathering after the onset of the GOE, and suggest that the current paradigm of placing the GOE at 2.33-2.32 Ga based on the last occurrence of MIF-S in South Africa should be re-evaluated
    corecore