24 research outputs found

    Detection of explosive markers using zeolite modified gas sensors

    Get PDF
    Detection of hidden explosive devices is a key priority for security and defence personnel around the globe. Electronic noses, based on metal oxide semiconductors (MOS), are a promising technology for creating inexpensive, portable and sensitive devices for such a purpose. An array of seven MOS gas sensors was fabricated by screen printing, based on WO3 and In2O3 inks. The sensors were tested against six gases, including four explosive markers: nitromethane, DMNB (2,3-dimetheyl-2,3-dinitrobutane), 2-ethylhexanol and ammonia. The gases were successfully detected with good sensitivity and selectivity from the array. Sensitivity was improved by overlaying or admixing the oxides with two zeolites, H-ZSM-5 and TS-1, and each showed improved responses to –NO2 and –OH moieties respectively. Admixtures in particular showed promise, with excellent sensitivity and good stability to humidity. Machine learning techniques were applied to a subset of the data and could accurately classify the gases detected, even when confounding factors were introduced

    Breath Analysis for Medical Diagnosis

    Get PDF

    Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring

    Get PDF
    Metal oxide semiconductor gas sensors are utilised in a variety of different roles and industries. They are relatively inexpensive compared to other sensing technologies, robust, lightweight, long lasting and benefit from high material sensitivity and quick response times. They have been used extensively to measure and monitor trace amounts of environmentally important gases such as carbon monoxide and nitrogen dioxide. In this review the nature of the gas response and how it is fundamentally linked to surface structure is explored. Synthetic routes to metal oxide semiconductor gas sensors are also discussed and related to their affect on surface structure. An overview of important contributions and recent advances are discussed for the use of metal oxide semiconductor sensors for the detection of a variety of gases—CO, NOx, NH3 and the particularly challenging case of CO2. Finally a description of recent advances in work completed at University College London is presented including the use of selective zeolites layers, new perovskite type materials and an innovative chemical vapour deposition approach to film deposition

    Optimal feature selection for classifying a large set of chemicals using metal oxide sensors

    Get PDF
    Using linear support vector machines, we investigated the feature selection problem for the application of all-against-all classification of a set of 20 chemicals using two types of sensors, classical doped tin oxide and zeolite-coated chromium titanium oxide sensors. We defined a simple set of possible features, namely the identity of the sensors and the sampling times and tested all possible combinations of such features in a wrapper approach. We confirmed that performance is improved, relative to previous results using this data set, by exhaustive comparison of these feature sets. Using the maximal number of different sensors and all available data points for each sensor does not necessarily yield the best results, even for the large number of classes in this problem. We contrast this analysis, using exhaustive screening of simple feature sets, with a number of more complex feature choices and find that subsampled sets of simple features can perform better. Analysis of potential predictors of classification performance revealed some relevance of clustering properties of the data and of correlations among sensor responses but failed to identify a single measure to predict classification success, reinforcing the relevance of the wrapper approach used. Comparison of the two sensor technologies showed that, in isolation, the doped tin oxide sensors performed better than the zeolite-coated chromium titanium oxide sensors but that mixed arrays, combining both technologies, performed best

    The Effect of Tween® Surfactants in Sol-Gel Processing for the Production of TiO2 Thin Films

    No full text
    Titanium dioxide thin films were deposited using a Tween® surfactant modified non-aqueous sol-gel method onto fluorine doped tin oxide glass substrates. The surfactant concentration and type in the sols was varied as well as the number of deposited layers. The as deposited thin films were annealed at 500 °C for 15 min before characterisation and photocatalytic testing with resazurin intelligent ink. The films were characterised using scanning electron microscopy, atomic force microscopy, X-ray diffraction, Raman spectroscopy and UV-Vis spectroscopy. Photocatalytic activity of the films was evaluated using a resazurin dye-ink test and the hydrophilicity of the films was analysed by water-contact angles measurements. Characterisation and photocatalytic testing has shown that the addition of surfactant in varying types and concentrations had a significant effect on the resulting thin film microstructure, such as changing the average particle size from 130 to 25 nm, and increasing the average root mean square roughness from 11 to 350 nm. Such structural changes have resulted in an enhanced photocatalytic performance for the thin films, with an observed reduction in dye half-life from 16.5 to three minutes

    Gas Sensing Studies of an n-n Hetero-Junction Array Based on SnO2 and ZnO Composites

    No full text
    A composite metal oxide semiconductor (MOS) sensor array based on tin dioxide (SNO2) and zinc oxide (ZnO) has been fabricated using a straight forward mechanical mixing method. The array was characterized using X-ray photoelectron spectroscopy, scanning electron microscopy, Raman spectroscopy and X-ray diffraction. The array was evaluated against a number of environmentally important reducing and oxidizing gases across a range of operating temperatures (300–500 °C). The highest response achieved was against 100 ppm ethanol by the 50 wt% ZnO–50 wt% SnO2 device, which exhibited a response of 109.1, a 4.5-fold increase with respect to the pure SnO2 counterpart (which displayed a response of 24.4) and a 12.3-fold enhancement with respect to the pure ZnO counterpart (which was associated with a response of 8.9), towards the same concentration of the analyte. Cross sensitivity studies were also carried out against a variety of reducing gases at an operating temperature of 300 °C. The sensors array showed selectivity towards ethanol. The enhanced behaviour of the mixed oxide materials was influenced by junction effects, composition, the packing structure and the device microstructure. The results show that it is possible to tune the sensitivity and selectivity of a composite sensor, through a simple change in the composition of the composite

    Vanadium dioxide and gold nanocomposite films for glazing applications

    No full text
    Vanadium dioxide is a material with great potential as an intelligent glazing material. The technology is based on a metal to semiconductor transition (MST) where there is an associated structural change from the higher temperature rutile structure to the lower temperature monoclinic structure. This structural transition results in significant changes in optical properties and electrical conductivity. Hybrid aerosol assisted and atmospheric pressure chemical vapour deposition methodology has been utilised, to produce thin films of gold nano-particle vanadium dioxide nanocomposites. Good surface coverage is observed comparable to that of APCVD processes and a variety of different film thickness’s and dopant levels have been made easily. The addition of tetraoctyl ammonium bromide (TOAB) to the precursor solution gave control of the size of vanadium oxide crystallites and led to an enhancement of thermochromic properties. Films were analysed by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. Their optical and thermochromic behaviour was also determined. Incorporation of gold nano-particles in the films leads to significant changes in the colour of the film due to the presence of a surface plasmon resonance band

    Doped and un-doped vanadium dioxide thin films prepared by atmospheric pressure chemical vapour deposition from vanadyl acetylacetonate and tungsten hexachloride: the effects of thickness and crystallographic orientation on thermochromic properties

    No full text
    The atmospheric pressure chemical vapour deposition reaction of vanadyl acetylacetonate and tungsten hexachloride with oxygen led to the production of thin films of tungsten doped monoclinic vanadium dioxide on glass substrates. Scanning electron microscopy and X-ray diffraction indicated that the films had different morphologies and crystallinities depending on the deposition conditions used. Transmission and reflectance measurements showed a significant change in properties in the near infra-red either side of the metal to semiconductor transition. Variable temperature transmission studies show that the metal to semiconductor transition was lowered by tungsten doping. The effect of film thickness was studied with un-doped and doped films. It was found that film thickness limited the intensity of light passing through the film and the extent of the thermochromic transition but was found not to influence the hysteresis width or temperature of transition. Different film growth conditions led to a range of film morphologies which profoundly affected the resulting optical properties of the films. It was found that film morphology and preferred crystallographic orientation had a marked influence on the width and switching temperature of the thermochromic transition
    corecore