191 research outputs found

    Binding and activation of host plasminogen on the surface of Francisella tularensis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Francisella tularensis </it>(FT) is a gram-negative facultative intracellular coccobacillus and is the causal agent of a life-threatening zoonotic disease known as tularemia. Although FT preferentially infects phagocytic cells of the host, recent evidence suggests that a significant number of bacteria can be found extracellularly in the plasma fraction of the blood during active infection. This observation suggests that the interaction between FT and host plasma components may play an important role in survival and dissemination of the bacterium during the course of infection. Plasminogen (PLG) is a protein zymogen that is found in abundance in the blood of mammalian hosts. A number of both gram-positive and gram-negative bacterial pathogens have the ability to bind to PLG, giving them a survival advantage by increasing their ability to penetrate extracellular matrices and cross tissue barriers.</p> <p>Results</p> <p>We show that PLG binds to the surface of FT and that surface-bound PLG can be activated to plasmin in the presence of tissue PLG activator <it>in vitro</it>. In addition, using Far-Western blotting assays coupled with proteomic analyses of FT outer membrane preparations, we have identified several putative PLG-binding proteins of FT.</p> <p>Conclusions</p> <p>The ability of FT to acquire surface bound PLG that can be activated on its surface may be an important virulence mechanism that results in an increase in initial infectivity, survival, and/or dissemination of this bacterium <it>in vivo</it>.</p

    Supporting Nature-Based Solutions via Nature-Based Thinking across European and Latin American cities

    Get PDF
    Nature-Based Solutions concepts and practices are being used worldwide as part of attempts to address societal challenges but have also been criticised for not dealing with deeper transformations needed to face urgent issues including biodiversity loss, climate change and inclusion. In this paper, we explore how an inclusive, integrated and long-sighted approach, emphasising a more radical integration of nature within cities, might support the transformations needed to endure major contemporary challenges. Addressing important emerging critiques of Nature-Based Solutions, we consider the potential of a more incisive form of Nature-Based Thinking (NBT) in cities, based on more holistic perspectives. The paper draws on a reflective and iterative research process that engaged both the research and practice communities through a symposium and a series of futures workshops that together explored the potential of NBT to develop future nature-cities relations in Europe and Latin America. The results of the reflective process suggest that notions of nature with people-not for people- new organisational structures, and the intention and capacity to apply long-term perspectives, are needed when planning for NBS interventions aimed at sustainable urban development. This includes developing a cultural-structural change based on new and inclusive understandings of human-nature relations, and novel governance paradigms that allow cross-sectoral coordination and engagement of local stakeholders beyond formal organisational structures

    Visualization of Murine Intranasal Dosing Efficiency Using Luminescent Francisella tularensis: Effect of Instillation Volume and Form of Anesthesia

    Get PDF
    Intranasal instillation is a widely used procedure for pneumonic delivery of drugs, vaccine candidates, or infectious agents into the respiratory tract of research mice. However, there is a paucity of published literature describing the efficiency of this delivery technique. In this report we have used the murine model of tularemia, with Francisella tularensis live vaccine strain (FTLVS) infection, to evaluate the efficiency of pneumonic delivery via intranasal dosing performed either with differing instillation volumes or different types of anesthesia. FTLVS was rendered luminescent via transformation with a reporter plasmid that constitutively expressed the Photorhabdus luminescens lux operon from a Francisella promoter. We then used an IVIS Spectrum whole animal imaging system to visualize FT dissemination at various time points following intranasal instillation. We found that instillation of FT in a dose volume of 10 µl routinely resulted in infection of the upper airways but failed to initiate infection of the pulmonary compartment. Efficient delivery of FT into the lungs via intranasal instillation required a dose volume of 50 µl or more. These studies also demonstrated that intranasal instillation was significantly more efficient for pneumonic delivery of FTLVS in mice that had been anesthetized with inhaled (isoflurane) vs. parenteral (ketamine/xylazine) anesthesia. The collective results underscore the need for researchers to consider both the dose volume and the anesthesia type when either performing pneumonic delivery via intranasal instillation, or when comparing studies that employed this technique

    Spin transition of Fe 3+ in Al-bearing phase D: An alternative explanation for small-scale seismic scatterers in the mid-lower mantle

    Get PDF
    . An equation of state over the entire pressure range was calculated using the observed variation in low-spin fraction with pressure and a low-spin bulk modulus of K T0 = 253(30) GPa, derived from the data above 65 GPa. Pronounced softening in the bulk modulus occurs during the spin transition, reaching a minimum at 50 GPa (∼1500 km) where the bulk modulus of Fe-Al phase D is about 35% lower than Fe-Al-bearing silicate perovskite. Recovery of the bulk modulus at 50-65 GPa results in a structure that has a similar incompressibility as silicate perovskite above 65 GPa. Similarly, the bulk sound velocity of Fe-Al phase D reaches a minimum at ∼50 GPa, being about 10% slower than silicate perovskite. The potential association of Fe-Al phase D with subducted slabs entering the lower mantle, along with its elastic properties through the Fe 3+ spin transition predicted at 1200-1800 km, suggests that phase D may provide an alternative explanation for small-scale mid-lower mantle seismic scatterers and supports the presence of deeply recycled sediments in the lower mantle

    Mitochondrial polymorphisms in rat genetic models of hypertension

    Get PDF
    Hypertension is a complex trait that has been studied extensively for genetic contributions of the nuclear genome. We examined mitochondrial genomes of the hypertensive strains: the Dahl Salt-Sensitive (S) rat, the Spontaneously Hypertensive Rat (SHR), and the Albino Surgery (AS) rat, and the relatively normotensive strains: the Dahl Salt-Resistant (R) rat, the Milan Normotensive Strain (MNS), and the Lewis rat (LEW). These strains were used previously for linkage analysis for blood pressure (BP) in our laboratory. The results provide evidence to suggest that variations in the mitochondrial genome do not account for observed differences in blood pressure between the S and R rats. However, variants were detected among the mitochondrial genomes of the various hypertensive strains, S, SHR, and AS, and also among the normotensive strains R, MNS, and LEW. A total of 115, 114, 106, 106, and 16 variations in mtDNA were observed between the comparisons S versus LEW, S versus MNS, S versus SHR, S versus AS, and SHR versus AS, respectively. Among the 13 genes coding for proteins of the electron transport chain, 8 genes had nonsynonymous variations between S, LEW, MNS, SHR, and AS. The lack of any sequence variants between the mitochondrial genomes of S and R rats provides conclusive evidence that divergence in blood pressure between these two inbred strains is exclusively programmed through their nuclear genomes. The variations detected among the various hypertensive strains provides the basis to construct conplastic strains and further evaluate the effects of these variants on hypertension and associated phenotypes

    A genome-wide RNAi screen identifies MASK as a positive regulator of cytokine receptor stability

    Get PDF
    Cytokine receptors often act via the Janus kinase and signal transducer and activator of transcription (JAK/STAT) pathway to form a signalling cascade that is essential for processes such as haematopoiesis, immune responses and tissue homeostasis. In order to transduce ligand activation, cytokine receptors must dimerise. However, mechanisms regulating their dimerisation are poorly understood. In order to better understand the processes regulating cytokine receptor levels, and their activity and dimerisation, we analysed the highly conserved JAK/STAT pathway in Drosophila, which acts via a single receptor, known as Domeless. We performed a genome-wide RNAi screen in Drosophila cells, identifying MASK as a positive regulator of Domeless dimerisation and protein levels. We show that MASK is able to regulate receptor levels and JAK/STAT signalling both in vitro and in vivo. We also show that its human homologue, ANKHD1, is also able to regulate JAK/STAT signalling and the levels of a subset of pathway receptors in human cells. Taken together, our results identify MASK as a novel regulator of cytokine receptor levels, and suggest functional conservation, which may have implications for human health
    corecore