1,227 research outputs found
Alien Registration- Bilodeau, Joseph A. (Lewiston, Androscoggin County)
https://digitalmaine.com/alien_docs/30388/thumbnail.jp
Recommended from our members
Absolute single photoionization cross-sections of Br3+: Experiment and theory
Absolute single photoionization cross section measurements for Br3+ ions are reported in the photon energy range 44.79-59.54 eV at a photon energy resolution of 21 ±3 meV. Measurements were performed at the Advanced Light Source at Lawrence Berkeley National Laboratory using the merged-beams technique. Numerous resonance features in the experimental spectrum are assigned and their energies and quantum defect values are tabulated. The cross-section measurements are also compared with Breit-Pauli R-matrix calculations with suitable agreement over the photon energy range investigated. Analysis of the measured spectrum including Rydberg resonance series identifications produced a new emperical determination of the ionizational potential of Br3+ of 46.977 ± 0.050 eV, which is 805 meV lower than the most recently published value of 47.782 eV. This disparity between our determination and the earlier published value is similar to an 843 meV shift in the accepted ionization potential published for iso-electronic Se2+ as part of this same research program
Advances in Atomic Data for Neutron-Capture Elements
Neutron(n)-capture elements (atomic number Z>30), which can be produced in
planetary nebula (PN) progenitor stars via s-process nucleosynthesis, have been
detected in nearly 100 PNe. This demonstrates that nebular spectroscopy is a
potentially powerful tool for studying the production and chemical evolution of
trans-iron elements. However, significant challenges must be addressed before
this goal can be achieved. One of the most substantial hurdles is the lack of
atomic data for n-capture elements, particularly that needed to solve for their
ionization equilibrium (and hence to convert ionic abundances to elemental
abundances). To address this need, we have computed photoionization cross
sections and radiative and dielectronic recombination rate coefficients for the
first six ions of Se and Kr. The calculations were benchmarked against
experimental photoionization cross section measurements. In addition, we
computed charge transfer (CT) rate coefficients for ions of six n-capture
elements. These efforts will enable the accurate determination of nebular Se
and Kr abundances, allowing robust investigations of s-process enrichments in
PNe.Comment: To be published in IAU Symp. 283: Planetary Nebulae, an Eye to the
Future; 2 page
Field and Laboratory Investigations on the Use of Fly Ash and LI-Based Admixtures to Prevent ASR in Concrete
Since the early 1990’s, CANMET (Department of Natural Resources Canada) is carrying out a comparative field and laboratory research program to investigate the efficacy of laboratory test procedures for properly predicting the long-term efficacy of supplementary cementitious materials (SCM) in controlling expansion due to alkali-silica reaction (ASR). Binary and ternary concrete systems, i.e. fly ash (Class F), lithium-based admixtures, fly ash / Li-based admixtures, were selected with a variety of alkali-silica reactive aggregates. The expansive behaviour of the various combinations listed above was investigated in the laboratory using concrete prisms stored under accelerated test conditions (38oC and 100% RH). Exposure blocks cast from the above mixtures were placed outdoors at the CANMET facilities located in Ottawa (Canada). This paper compares the results of expansion testing in the laboratory against that of exposure blocks after 15 years outdoors. The results are also analysed in view of providing recommendations for the use of such materials / combinations for the manufacture of concrete that will be at a minimum risk of developing deleterious expansion and cracking due to ASR
Molecular and Genetic Aspects of Odontogenic Lesions
In this article we outline the molecular findings of select odontogenic tumors. In each section, we briefly review selected the clinicoradiographic, histologic, immunologic features, focusing on the molecular findings and their applications in practice. The understanding of molecular pathobiology at various other organ sites has developed quite rapidly in recent years, however much remains unknown about the genetic profile of odontogenic tumors. Improved understanding of mutations in odontogenic tumors may clarify classification schema and elucidate targets for novel therapies. Molecular testing will no doubt improve our understanding of odontogenic tumor pathogenesis and will likely be, someday, an important component of routine clinical practice and its role will only increase in the coming years
RNA splicing at human immunodeficiency virus type 1 3 ' splice site A2 is regulated by binding of hnRNP A/B proteins to an exonic splicing silencer element
The synthesis of human immunodeficiency virus type 1 (HIV-1) mRNAs is a complex process by which more than 30 different mRNA species are produced by alternative splicing of a single primary RNA transcript. HIV-1 splice sites are used with significantly different efficiencies, resulting in different levels of mRNA species in infected cells. Splicing of Tat mRNA, which is present at relatively low levels in infected cells, is repressed by the presence of exonic splicing silencers (ESS) within the two tat coding exons (ESS2 and ESS3). These ESS elements contain the consensus sequence PyUAG. Here we show that the efficiency of splicing at 3 ' splice site A2, which is used to generate Vpr mRNA, is also regulated by the presence of an ESS (ESSV), which has sequence homology to ESS2 and ESS3. Mutagenesis of the three PyUAG motifs within ESSV increases splicing at splice site A2, resulting in increased Vpr mRNA levels and reduced skipping of the noncoding exon flanked by A2 and D3. The increase in Vpr mRNA levels and the reduced skipping also occur when splice site D3 is mutated toward the consensus sequence. By in vitro splicing assays, we show that ESSV represses splicing when placed downstream of a heterologous splice site. A1, A1(B), A2, and B1 hnRNPs preferentially bind to ESSV RNA compared to ESSV mutant RNA. Each of these proteins, when added back to HeLa cell nuclear extracts depleted of ESSV-binding factors, is able to restore splicing repression. The results suggest that coordinate repression of HIV-1 RNA splicing is mediated by members of the hnRNP A/B protein family
- …