989 research outputs found

    Massive 70 micron quiet clumps I: evidence of embedded low/intermediate-mass star formation activity

    Get PDF
    Massive clumps, prior to the formation of any visible protostars, are the best candidates to search for the elusive massive starless cores. In this work we investigate the dust and gas properties of massive clumps selected to be 70 micron quiet, therefore good starless candidates. Our sample of 18 clumps has masses 300 < M < 3000 M_sun, radius 0.54 < R < 1.00 pc, surface densities Sigma > 0.05 g cm^-2 and luminosity/mass ratio L/M < 0.3. We show that half of these 70 micron quiet clumps embed faint 24 micron sources. Comparison with GLIMPSE counterparts shows that 5 clumps embed young stars of intermediate stellar mass up to ~5.5 M_sun. We study the clump dynamics with observations of N2H+ (1-0), HNC (1-0) and HCO+ (1-0) made with the IRAM 30m telescope. Seven clumps have blue-shifted spectra compatible with infall signatures, for which we estimate a mass accretion rate 0.04 < M_dot < 2.0 x 10^-3 M_sun yr^-1, comparable with values found in high-mass protostellar regions, and free-fall time of the order of t_ff = 3 x 10^5 yr. The only appreciable difference we find between objects with and without embedded 24 micron sources is that the infall rate appears to increase from 24 micron dark to 24 micron bright objects. We conclude that all 70 micron quiet objects have similar properties on clump scales, independently of the presence of an embedded protostar. Based on our data we speculate that the majority, if not all of these clumps may already embed faint, low-mass protostellar cores. If these clumps are to form massive stars, this must occur after the formation of these lower mass stars.Comment: 44 pages, 11 Figures. Accepted for publication in MNRA

    Performances of Herschel/PACS bolometer arrays and future developments at CEA

    Get PDF
    The European Space Agency is building a space telescope to observe the Universe in the Far-IR and sub-millimeter regime of the electromagnetic spectrum. The scientific payload is composed of three instruments. One of them, PACS, is equipped with a novel type of bolometer arrays developed by CEA in the late 90's. We briefly present the PACS Photometer and the architecture of CEA filled bolometer arrays. We accessed the physics of the detectors and thoroughly measured their performances by developing a pragmatic calibration procedure. The Photometer is now calibrated and integrated on the focal plane of the observatory. The launch is scheduled for April 2009. Meanwhile, CEA is working on adapting PACS bolometers to longer wavelength for wide-field ground-based telescopes, and for the future cold-telescope space mission SPICA

    CEA Bolometer Arrays: the First Year in Space

    Get PDF
    The CEA/LETI and CEA/SAp started the development of far-infrared filled bolometer arrays for space applications over a decade ago. The unique design of these detectors makes possible the assembling of large focal planes comprising thousands of bolometers running at 300 mK with very low power dissipation. Ten arrays of 16x16 pixels were thoroughly tested on the ground, and integrated in the Herschel/PACS instrument before launch in May 2009. These detectors have been successfully commissioned and are now operating in their nominal environment at the second Lagrangian point of the Earth-Sun system. In this paper we briefly explain the functioning of CEA bolometer arrays, and we present the properties of the detectors focusing on their noise characteristics, the effect of cosmic rays on the signal, the repeatability of the measurements, and the stability of the system

    HOPS 383: An Outbursting Class 0 Protostar in Orion

    Get PDF
    We report the dramatic mid-infrared brightening between 2004 and 2006 of HOPS 383, a deeply embedded protostar adjacent to NGC 1977 in Orion. By 2008, the source became a factor of 35 brighter at 24 microns with a brightness increase also apparent at 4.5 microns. The outburst is also detected in the submillimeter by comparing APEX/SABOCA to SCUBA data, and a scattered-light nebula appeared in NEWFIRM K_s imaging. The post-outburst spectral energy distribution indicates a Class 0 source with a dense envelope and a luminosity between 6 and 14 L_sun. Post-outburst time-series mid- and far-infrared photometry shows no long-term fading and variability at the 18% level between 2009 and 2012. HOPS 383 is the first outbursting Class 0 object discovered, pointing to the importance of episodic accretion at early stages in the star formation process. Its dramatic rise and lack of fading over a six-year period hint that it may be similar to FU Ori outbursts, although the luminosity appears to be significantly smaller than the canonical luminosities of such objects.Comment: Accepted by ApJ Letters, 6 pages, 4 figures; v2 has an updated email address for the lead autho

    A cluster of outflows in the Vulpecula Rift

    Full text link
    We present 12^{12}CO, 13^{13}CO and C18^{18}O (J=3-2) observations of a new cluster of outflows in the Vulpecula Rift with HARP-B on the JCMT. The mass associated with the outflows, measured using the 12^{12}CO HARP-B observations and assuming a distance to the region of 2.3 kpc, is 129 \msol{}, while the mass associated with the dense gas from C18^{18}O observations is 458 \msol{} and the associated sub-millimeter core has a mass of 327 ±\pm 112 \msol{} independently determined from Bolocam 1.1mm data. The outflow-to-core mass ratio is therefore \sim0.4, making this region one of the most efficient observed thus far with more than an order of magnitude more mass in the outflow than would be expected based on previous results. The kinetic energy associated with the flows, 94×1045\times10^{45} ergs, is enough to drive the turbulence in the local clump, and potentially unbind the local region altogether. The detection of SiO (J=8-7) emission toward the outflows indicates that the flow is still active, and not simply a fossil flow. We also model the SEDs of the four YSOs associated with the molecular material, finding them all to be of mid to early B spectral type. The energetic nature of the outflows and significant reservoir of cold dust detected in the sub-mm suggest that these intermediate mass YSOs will continue to accrete and become massive, rather than reach the main sequence at their current mass.Comment: 11 pages, 8 figures and 3 tables. Accepted to MNRAS. A higher-resolution version of figure 1 will be included in the published version and is available from the authors upon request. Updated with red and blue wings swapped to match doppler shif

    Fine Selmer Groups and Isogeny Invariance

    Full text link
    We investigate fine Selmer groups for elliptic curves and for Galois representations over a number field. More specifically, we discuss Conjecture A, which states that the fine Selmer group of an elliptic curve over the cyclotomic extension is a finitely generated Zp\mathbb{Z}_p-module. The relationship between this conjecture and Iwasawa's classical μ=0\mu=0 conjecture is clarified. We also present some partial results towards the question whether Conjecture A is invariant under isogenies.Comment: 20 page

    Direct Estimate of Cirrus Noise in Herschel Hi-GAL Images

    Get PDF
    In Herschel images of the Galactic plane and many star forming regions, a major factor limiting our ability to extract faint compact sources is cirrus confusion noise, operationally defined as the "statistical error to be expected in photometric measurements due to confusion in a background of fluctuating surface brightness". The histogram of the flux densities of extracted sources shows a distinctive faint-end cutoff below which the catalog suffers from incompleteness and the flux densities become unreliable. This empirical cutoff should be closely related to the estimated cirrus noise and we show that this is the case. We compute the cirrus noise directly, both on Herschel images from which the bright sources have been removed and on simulated images of cirrus with statistically similar fluctuations. We connect these direct estimates with those from power spectrum analysis, which has been used extensively to predict the cirrus noise and provides insight into how it depends on various statistical properties and photometric operational parameters. We report multi-wavelength power spectra of diffuse Galactic dust emission from Hi-GAL observations at 70 to 500 microns within Galactic plane fields at l= 30 degrees and l= 59 degrees. We find that the exponent of the power spectrum is about -3. At 250 microns, the amplitude of the power spectrum increases roughly as the square of the median brightness of the map and so the expected cirrus noise scales linearly with the median brightness. Generally, the confusion noise will be a worse problem at longer wavelengths, because of the combination of lower angular resolution and the rising power spectrum of cirrus toward lower spatial frequencies, but the photometric signal to noise will also depend on the relative spectral energy distribution of the source compared to the cirrus.Comment: 4 pages (in journal), 3 figures, Astronomy and Astrophysics, accepted for publication 13 May 201

    Star Formation in the Milky Way. The Infrared View

    Full text link
    I present a brief review of some of the most recent and active topics of star formation process in the Milky Way using mid and far infrared observations, and motivated by the research being carried out by our science group using data gathered by the Spitzer and Herschel space telescopes. These topics include bringing together the scaling relationships found in extragalactic systems with that of the local nearby molecular clouds, the synthetic modeling of the Milky Way and estimates of its star formation rate.Comment: 12 pages, 9 figures. To apper in "Cosmic-ray induced phenomenology in star-forming environments: Proceedings of the 2nd Session of the Sant Cugat Forum of Astrophysics" (April 16-19, 2012), Olaf Reimer and Diego F. Torres (eds.

    Star formation triggered by HII regions in our Galaxy: First results for N49 from the Herschel infrared survey of the Galactic plane

    Get PDF
    It has been shown that by means of different physical mechanisms the expansion of HII regions can trigger the formation of new stars of all masses. This process may be important to the formation of massive stars but has never been quantified in the Galaxy. We use Herschel-PACS and -SPIRE images from the Herschel Infrared survey of the Galactic plane, Hi-GAL, to perform this study. We combine the Spitzer-GLIMPSE and -MIPSGAL, radio-continuum and sub-millimeter surveys such as ATLASGAL with Hi-GAL to study Young Stellar Objects (YSOs) observed towards Galactic HII regions. We select a representative HII region, N49, located in the field centered on l=30 degr observed as part of the Hi-GAL Science Demonstration Phase, to demonstrate the importance Hi-GAL will have to this field of research. Hi-GAL PACS and SPIRE images reveal a new population of embedded young stars, coincident with bright ATLASGAL condensations. The Hi-GAL images also allow us, for the first time, to constrain the physical properties of the newly formed stars by means of fits to their spectral energy distribution. Massive young stellar objects are observed at the borders of the N49 region and represent second generation massive stars whose formation has been triggered by the expansion of the ionized region. Hi-GAL enables us to detect a population of young stars at different evolutionary stages, cold condensations only being detected in the SPIRE wavelength range. The far IR coverage of Hi-GAL strongly constrains the physical properties of the YSOs. The large and unbiased spatial coverage of this survey offers us a unique opportunity to lead, for the first time, a global study of star formation triggered by HII regions in our Galaxy.Comment: 4 pages, 2 figures, accepted by A&A (Special issue on Herschel first results

    The NIKA instrument: results and perspectives towards a permanent KID based camera for the Pico Veleta observatory

    Get PDF
    The New IRAM KIDs Array (NIKA) is a pathfinder instrument devoted to millimetric astronomy. In 2009 it was the first multiplexed KID camera on the sky; currently it is installed at the focal plane of the IRAM 30-meters telescope at Pico Veleta (Spain). We present preliminary data from the last observational run and the ongoing developments devoted to the next NIKA-2 kilopixels camera, to be commissioned in 2015. We also report on the latest laboratory measurements, and recent improvements in detector cosmetics and read-out electronics. Furthermore, we describe a new acquisition strategy allowing us to improve the photometric accuracy, and the related automatic tuning procedure.Comment: 24th International Symposium on Space Terahertz Technology, ISSTT 2013, April 8 to 10, 2013, Groningen, the Netherland
    corecore