77 research outputs found
Host Alternation Is Necessary to Maintain the Genome Stability of Rift Valley Fever Virus
Arthropod-borne viruses are transmitted among vertebrate hosts by insect vectors. Unusually, Rift Valley fever virus (RVFV) can also be transmitted by direct contacts of animals/humans with infectious tissues. What are the molecular mechanisms and evolutionary events leading to adopt one mode of transmission rather than the other? Viral replication is implied to be different in a vertebrate host and an invertebrate host. The alternating host cycle tends to limit virus evolution by adopting a compromise fitness level for replication in both hosts. To test this hypothesis, we used a cell culture model system to study the evolution of RVFV. We found that freeing RVFV from alternating replication in mammalian and mosquito cells led to large deletions in the NSs gene carrying the virulence factor. Resulting NSs-truncated viruses were able to protect mice from a challenge with a virulent RVFV. Thus, in nature, virulence is likely maintained by continuous alternating passages between vertebrates and insects. Thereby, depending on the mode of transmission adopted, the evolution of RVFV will be of major importance to predict the outcome of outbreaks
Association of the interferon-Ξ² gene with pericentromeric heterochromatin is dynamically regulated during virus infection through a YY1-dependent mechanism
Nuclear architecture as well as gene nuclear positioning can modulate gene expression. In this work, we have analyzed the nuclear position of the interferon-Ξ² (IFN-Ξ²) locus, responsible for the establishment of the innate antiviral response, with respect to pericentromeric heterochromatin (PCH) in correlation with virus-induced IFN-Ξ² gene expression. Experiments were carried out in two different cell types either non-infected (NI) or during the time course of three different viral infections. In NI cells, we showed a monoallelic IFN-Ξ² promoter association with PCH that strongly decreased after viral infection. Dissociation of the IFN-Ξ² locus away from these repressive regions preceded strong promoter transcriptional activation and was reversible within 12βh after infection. No dissociation was observed after infection with a virus that abnormally maintained the IFN-Ξ² gene in a repressed state. Dissociation induced after virus infection specifically targeted the IFN-Ξ² locus without affecting the general structure and nuclear distribution of PCH clusters. Using cell lines stably transfected with wild-type or mutated IFN-Ξ² promoters, we identified the proximal region of the IFN-Ξ² promoter containing YY1 DNA-binding sites as the region regulating IFN-Ξ² promoter association with PCH before as well as during virus infection
Expression of recombinant Araraquara Hantavirus nucleoprotein in insect cells and its use as an antigen for immunodetection compared to the same antigen expressed in Escherichia coli
<p>Abstract</p> <p>Background</p> <p>Antigens for Hantavirus serological tests have been produced using DNA recombinant technology for more than twenty years. Several different strategies have been used for that purpose. All of them avoid the risks and difficulties involved in multiplying Hantavirus in the laboratory. In Brazil, the Araraquara virus is one of the main causes of Hantavirus Cardio-Pulmonary Syndrome (HCPS).</p> <p>Methods</p> <p>In this investigation, we report the expression of the N protein of the Araraquara Hantavirus in a Baculovirus Expression System, the use of this protein in IgM and IgG ELISA and comparison with the same antigen generated in <it>E. coli</it>.</p> <p>Results</p> <p>The protein obtained, and purified in a nickel column, was effectively recognized by antibodies from confirmed HCPS patients. Comparison of the baculovirus generated antigen with the N protein produced in <it>E. coli </it>showed that both were equally effective in terms of sensitivity and specificity.</p> <p>Conclusions</p> <p>Our results therefore indicate that either of these proteins can be used in serological tests in Brazil.</p
Quantitative analysis of particles, genomes and infectious particles in supernatants of haemorrhagic fever virus cell cultures
Information on the replication of viral haemorrhagic fever viruses is not readily available and has never been analysed in a comparative approach. Here, we compared the cell culture growth characteristics of haemorrhagic fever viruses (HFV), of the Arenaviridae, Filoviridae, Bunyaviridae, and Flavivridae virus families by performing quantitative analysis of cell culture supernatants by (i) electron microscopy for the quantification of virus particles, (ii) quantitative real time PCR for the quantification of genomes, and (iii) determination of focus forming units by coating fluorescent antibodies to infected cell monolayers for the quantification of virus infectivity
Tissue Tropism and Target Cells of NSs-Deleted Rift Valley Fever Virus in Live Immunodeficient Mice
Rift Valley fever, caused by a member of the Bunyaviridae family, has spread during recent years to most sub-Saharan African countries, in Egypt and in the Arabian peninsula. The virus can be transmitted by insect vectors or by direct contacts with infectious tissues. The analysis of virus replication and dissemination in laboratory animals has been hampered by the need to euthanize sufficient numbers of animals and to assay appropriate organs at various time points after infection to evaluate the viral replication. By following the bioluminescence and fluorescence of Rift Valley fever viruses expressing light reporters, we were able to track the real-time dissemination of the viruses in live immunodeficient mice. We showed that the first infected organs were the thymus, spleen and liver, but the liver rapidly became the main location of viral replication. Phagocytes also appeared as important targets, and their systemic depletion by use of clodronate liposomes decreased the number of viruses in the blood, delayed the viral dissemination and prolonged the survival of the infected mice
Processing of Genome 5β² Termini as a Strategy of Negative-Strand RNA Viruses to Avoid RIG-I-Dependent Interferon Induction
Innate immunity is critically dependent on the rapid production of interferon in response to intruding viruses. The intracellular pathogen recognition receptors RIG-I and MDA5 are essential for interferon induction by viral RNAs containing 5β² triphosphates or double-stranded structures, respectively. Viruses with a negative-stranded RNA genome are an important group of pathogens causing emerging and re-emerging diseases. We investigated the ability of genomic RNAs from substantial representatives of this virus group to induce interferon via RIG-I or MDA5. RNAs isolated from particles of Ebola virus, Nipah virus, Lassa virus, and Rift Valley fever virus strongly activated the interferon-beta promoter. Knockdown experiments demonstrated that interferon induction depended on RIG-I, but not MDA5, and phosphatase treatment revealed a requirement for the RNA 5β² triphosphate group. In contrast, genomic RNAs of Hantaan virus, Crimean-Congo hemorrhagic fever virus and Borna disease virus did not trigger interferon induction. Sensitivity of these RNAs to a 5β² monophosphate-specific exonuclease indicates that the RIG-I-activating 5β² triphosphate group was removed post-transcriptionally by a viral function. Consequently, RIG-I is unable to bind the RNAs of Hantaan virus, Crimean-Congo hemorrhagic fever virus and Borna disease virus. These results establish RIG-I as a major intracellular recognition receptor for the genome of most negative-strand RNA viruses and define the cleavage of triphosphates at the RNA 5β² end as a strategy of viruses to evade the innate immune response
p53 Activation following Rift Valley Fever Virus Infection Contributes to Cell Death and Viral Production
Rift Valley fever virus (RVFV) is an emerging viral zoonosis that is responsible for devastating outbreaks among livestock and is capable of causing potentially fatal disease in humans. Studies have shown that upon infection, certain viruses have the capability of utilizing particular cellular signaling pathways to propagate viral infection. Activation of p53 is important for the DNA damage signaling cascade, initiation of apoptosis, cell cycle arrest and transcriptional regulation of multiple genes. The current study focuses on the role of p53 signaling in RVFV infection and viral replication. These results show an up-regulation of p53 phosphorylation at several serine sites after RVFV MP-12 infection that is highly dependent on the viral protein NSs. qRT-PCR data showed a transcriptional up-regulation of several p53 targeted genes involved in cell cycle and apoptosis regulation following RVFV infection. Cell viability assays demonstrate that loss of p53 results in less RVFV induced cell death. Furthermore, decreased viral titers in p53 null cells indicate that RVFV utilizes p53 to enhance viral production. Collectively, these experiments indicate that the p53 signaling pathway is utilized during RVFV infection to induce cell death and increase viral production
Culex pipiens, an Experimental Efficient Vector of West Nile and Rift Valley Fever Viruses in the Maghreb Region
West Nile fever (WNF) and Rift Valley fever (RVF) are emerging diseases causing epidemics outside their natural range of distribution. West Nile virus (WNV) circulates widely and harmlessly in the old world among birds as amplifying hosts, and horses and humans as accidental dead-end hosts. Rift Valley fever virus (RVFV) re-emerges periodically in Africa causing massive outbreaks. In the Maghreb, eco-climatic and entomologic conditions are favourable for WNV and RVFV emergence. Both viruses are transmitted by mosquitoes belonging to the Culex pipiens complex. We evaluated the ability of different populations of Cx. pipiens from North Africa to transmit WNV and the avirulent RVFV Clone 13 strain. Mosquitoes collected in Algeria, Morocco, and Tunisia during the summer 2010 were experimentally infected with WNV and RVFV Clone 13 strain at titers of 107.8 and 108.5 plaque forming units/mL, respectively. Disseminated infection and transmission rates were estimated 14β21 days following the exposure to the infectious blood-meal. We show that 14 days after exposure to WNV, all mosquito st developed a high disseminated infection and were able to excrete infectious saliva. However, only 69.2% of mosquito strains developed a disseminated infection with RVFV Clone 13 strain, and among them, 77.8% were able to deliver virus through saliva. Thus, Cx. pipiens from the Maghreb are efficient experimental vectors to transmit WNV and to a lesser extent, RVFV Clone 13 strain. The epidemiologic importance of our findings should be considered in the light of other parameters related to mosquito ecology and biology
Chemotactic and Inflammatory Responses in the Liver and Brain Are Associated with Pathogenesis of Rift Valley Fever Virus Infection in the Mouse
Rift Valley fever virus (RVFV) is a major human and animal pathogen associated with severe disease including hemorrhagic fever or encephalitis. RVFV is endemic to parts of Africa and the Arabian Peninsula, but there is significant concern regarding its introduction into non-endemic regions and the potentially devastating effect to livestock populations with concurrent infections of humans. To date, there is little detailed data directly comparing the host response to infection with wild-type or vaccine strains of RVFV and correlation with viral pathogenesis. Here we characterized clinical and systemic immune responses to infection with wild-type strain ZH501 or IND vaccine strain MP-12 in the C57BL/6 mouse. Animals infected with live-attenuated MP-12 survived productive viral infection with little evidence of clinical disease and minimal cytokine response in evaluated tissues. In contrast, ZH501 infection was lethal, caused depletion of lymphocytes and platelets and elicited a strong, systemic cytokine response which correlated with high virus titers and significant tissue pathology. Lymphopenia and platelet depletion were indicators of disease onset with indications of lymphocyte recovery correlating with increases in G-CSF production. RVFV is hepatotropic and in these studies significant clinical and histological data supported these findings; however, significant evidence of a pro-inflammatory response in the liver was not apparent. Rather, viral infection resulted in a chemokine response indicating infiltration of immunoreactive cells, such as neutrophils, which was supported by histological data. In brains of ZH501 infected mice, a significant chemokine and pro-inflammatory cytokine response was evident, but with little pathology indicating meningoencephalitis. These data suggest that RVFV pathogenesis in mice is associated with a loss of liver function due to liver necrosis and hepatitis yet the long-term course of disease for those that might survive the initial hepatitis is neurologic in nature which is supported by observations of human disease and the BALB/c mouse model
Infection and Transmission of Rift Valley Fever Viruses Lacking the NSs and/or NSm Genes in Mosquitoes: Potential Role for NSm in Mosquito Infection
Rift Valley fever virus is transmitted mainly by mosquitoes and causes disease in humans and animals throughout Africa and the Arabian Peninsula. The impact of disease is large in terms of human illness and mortality, and economic impact on the livestock industry. For these reasons, and because there is a risk of this virus spreading to Europe and North America, it is important to develop a vaccine that is stable, safe and effective in preventing infection. Potential vaccine viruses have been developed through deletion of two genes (NSs and NSm) affecting virus virulence. Because this virus is normally transmitted by mosquitoes we must determine the effects of the deletions in these vaccine viruses on their ability to infect and be transmitted by mosquitoes. An optimal vaccine virus would not infect or be transmitted. The viruses were tested in two mosquito species: Aedes aegypti and Culex quinquefasciatus. Deletion of the NSm gene reduced infection of Ae. aegypti mosquitoes indicating a role for the NSm protein in mosquito infection. The virus with deletion of both NSs and NSm genes was the best vaccine candidate since it did not infect Ae. aegypti and showed reduced infection and transmission rates in Cx. quinquefasciatus
- β¦