411 research outputs found

    Dynamics and structure of turbulent premixed flames

    Get PDF
    In earlier work (Mantel & Bilger, 1994) the structure of the turbulent premixed flame was investigated using statistics based on conditional averaging with the reaction progress variable as the conditioning variable. The DNS data base of Trouve and Poinsot (1994) was used in this investigation. Attention was focused on the conditional dissipation and conditional axial velocity in the flame with a view to modeling these quantities for use in the conditional moment closure (CMC) approach to analysis of kinetics in premixed flames (Bilger, 1993). Two remarkable findings were made: there was almost no acceleration of the axial velocity in the flame front itself; and the conditional scalar dissipation remained as high, or higher, than that found in laminar premixed flames. The first finding was surprising since in laminar flames all the fluid acceleration occurs through the flame front, and this could be expected also for turbulent premixed flames at the flamelet limit. The finding gave hope of inventing a new approach to the dynamics of turbulent premixed flames through use of rapid distortion theory or an unsteady Bernoulli equation. This could lead to a new second order closure for turbulent premixed flames. The second finding was contrary to our measurements with laser diagnostics in lean hydrocarbon flames where it is found that conditional scalar dissipation drops dramatically below that for laminar flamelets when the turbulence intensity becomes high. Such behavior was not explainable with a one-step kinetic model, even at non-unity Lewis number. It could be due to depletion of H2 from the reaction zone by preferential diffusion. The capacity of the flame to generate radicals is critically dependent on the levels of H2 present (Bilger, et al., 1991). It seemed that a DNS computation with a multistep reduced mechanism would be worthwhile if a way could be found to make this feasible. Truly innovative approaches to complex problems often come only when there is the opportunity to work close at hand with the (in this case numerical) experimental data. Not only can one spot patterns and relationships in the data which could be important, but one can also get to know the limitations of the technique being used, so that when the next experiment is being designed it will address resolvable questions. A three-year grant from the Australian Research Council has enabled us to develop a small capability at the University of Sydney to work on DNS of turbulent reacting flow, and to analyze data bases generated at CTR. Collaboration between the University of Sydney and CTR is essential to this project and finding a workable modus operandum for this collaboration, given the constraints involved, has been a major objective of the past year's effort. The overall objectives of the project are: (1) to obtain a quantitative understanding of the dynamics of turbulent premixed flames at high turbulence levels with a view to developing improved second order closure models; and (2) to carry out new DNS experiments on turbulent premixed flames using a carefully chosen multistep reduced mechanism for the chemical kinetics, with a view to elucidating the laser diagnostic findings that are contrary to the findings for DNS using one-step kinetics. In this first year the objectives have been to make the existing CTR data base more accessible to coworkers at the University of Sydney, to make progress on understanding the dynamics of the flame in this existing CTR data base, and to carefully construct a suitable multistep reduced mechanism for use in a new set of DNS experiments on turbulent premixed flames

    Possible Dibaryons with Strangeness s=-5

    Get PDF
    In the framework of RGMRGM, the binding energy of the six quark system with strangeness s=-5 is systematically investigated under the SU(3) chiral constituent quark model. The single ΞΩ\Xi^*\Omega channel calculation with spins S=0 and 3 and the coupled ΞΩ\Xi\Omega and ΞΩ\Xi^*\Omega channel calculation with spins S=1 and 2 are considered, respectively. The results show following observations: In the spin=0 case, ΞΩ\Xi^* \Omega is a bound dibaryon with the binding energy being 80.092.4MeV80.0 \sim 92.4 MeV. In the S=1 case, ΞΩ\Xi\Omega is also a bound dibaryon. Its binding energy is ranged from 26.2MeV26.2 MeV to 32.9MeV32.9 MeV. In the S=2 and S=3 cases, no evidence of bound dibaryons are found. The phase shifts and scattering lengths in the S=0 and S=1 cases are also given.Comment: 10 pages, late

    Search for Low Mass Exotic mesonic structures. Part I: experimental results

    Full text link
    Recently, several papers discussed on the existence of a low mass new structure at a mass close to M=214.3 MeV. It was suggested that the Σ+\Sigma^{+} disintegration: Σ+\Sigma^{+}\topP0^{0}, P0μμ+^{0}\to\mu^{-}\mu^{+} proceeds through an intermediate particle P0^{0} having such mass. The present work intends to look at other new or available data, in order to observe the eventual existence of small narrow peaks or shoulders in very low mesonic masses. Indeed narrow structures were already extracted from various data in dibaryons, baryons and mesons (at larger masses that those studied here).Comment: 7 pages 11 figure

    Effect of a nonuniform distribution of voids on the plastic response of voided materials: a computational and statistical analysis

    Get PDF
    This study investigates the overall and local response of porous media composed of a perfectly plastic matrix weakened by stress-free voids. Attention is focused on the specific role played by porosity fluctuations inside a representative volume element. To this end, numerical simulations using the Fast Fourier Transform (FFT) are performed on different classes of microstructure corresponding to different spatial distributions of voids. Three types of microstructures are investigated: random microstructures with no void clustering, microstructures with a connected cluster of voids and microstructures with disconnected void clusters. These numerical simulations show that the porosity fluctuations can have a strong effect on the overall yield surface of porous materials. Random microstructures without clusters and microstructures with a connected cluster are the hardest and the softest configurations, respectively, whereas microstructures with disconnected clusters lead to intermediate responses. At a more local scale, the salient feature of the fields is the tendency for the strain fields to concentrate in specific bands. Finally, an image analysis tool is proposed for the statistical characterization of the porosity distribution. It relies on the distribution of the ‘distance function’, the width of which increases when clusters are present. An additional connectedness analysis allows us to discriminate between clustered microstructures

    Hyperon-nucleon interactions in the ppK+Λpp p \to K^+ \Lambda p reaction

    Full text link
    We present calculations of the invariant mass spectra of the Λ\Lambdap system for the exclusive ppK+Λpp p \to K^+ \Lambda p reaction with the aim of studying the final state interaction between the Λ\Lambda-hyperon and the proton. The reaction is described within a meson exchange framework and the final state Λp\Lambda p interaction is incorporated through an off-shell t-matrix for the ΛpΛp\Lambda p \to \Lambda p scattering, constructed using the available hyperon-nucleon (YN) potentials. The cross sections are found to be sensitive to the type of YN potential used especially at the Λ\Lambda and Σ\Sigma production thresholds. Hence, data on this exclusive reaction, which can be used to constrain the YN potentials are desirable.Comment: 20 pages, Latex, 6 figures, revised manuscript (to appear in IJMP-E

    Collectivity Embedded in Complex Spectra of Finite Interacting Fermi Systems: Nuclear Example

    Full text link
    The mechanism of collectivity coexisting with chaos in a finite system of strongly interacting fermions is investigated. The complex spectra are represented in the basis of two-particle two-hole states describing the nuclear double-charge exchange modes in 48^{48}Ca. An example of Jπ=0J^{\pi}=0^- excitations shows that the residual interaction, which generically implies chaotic behavior, under certain specific and well identified conditions may create strong transitions, even much stronger than those corresponding to a pure mean-field picture. Such an effect results from correlations among the off-diagonal matrix elements, is connected with locally reduced density of states and a local minimum in the information entropy.Comment: 16 pages, LaTeX2e, REVTeX, 8 PostScript figures, to appear in Physical Review

    On the close to threshold meson production in neutron-neutron collisions

    Get PDF
    A method of measuring the close to threshold meson production in neutron-neutron collisions is described where the momenta of the colliding neutrons can be determined with the accuracy obtainable for the proton-proton reaction. The technique is based on the double quasi-free nn --> nn X^0 reaction, where deuterons are used as a source of neutronsComment: 6 pages, 2 figures, to be published in Phys. Lett.

    Search for Bremsstrahlung radiation in quasi-free n p --> n p gamma reactions

    Full text link
    Due to the high sensitivity of the N N --> N N gamma reaction to the nucleon-nucleon potential, Bremsstrahlung radiation is used as a tool to investigate details of the nucleon-nucleon interaction. Such investigations can be performed at the cooler synchrotron COSY in the Research Centre Juelich, by dint of the COSY-11 detection system. The results of the identification of Bremsstrahlung radiation emitted via the d p --> d p gamma reaction in data taken with a proton target and a deuteron beam are presented and discussed.Comment: 3 pages; Presented at Meson 2004: 8th International Workshop on Meson Production, Properties and Interaction, Krakow, Poland, 4-8 June 2004; Submitted to International Journal of Modern Physics
    corecore