183 research outputs found

    The economic value of R0 for selective breeding against microparasitic diseases

    Get PDF
    International audienceAbstractBackgroundMicroparasitic diseases are caused by bacteria and viruses. Genetic improvement of resistance to microparasitic diseases in breeding programs is desirable and should aim at reducing the basic reproduction ratio R0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}R0{\text{R}}_{0}\end{document}. Recently, we developed a method to derive the economic value of R0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}R0{\text{R}}_{0}\end{document} for macroparasitic diseases. In epidemiological models for microparasitic diseases, an animal’s disease status is treated as infected or not infected, resulting in a definition of R0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}R0{\text{R}}_{0}\end{document} that differs from that for macroparasitic diseases. Here, we extend the method for the derivation of the economic value of R0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}R0{\text{R}}_{0}\end{document} to microparasitic diseases.MethodsWhen R0≤1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}R01{\text{R}}_{0} \le 1\end{document}, the economic value of R0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}R0{\text{R}}_{0}\end{document} is zero because the disease is very rare. When R0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}R0{\text{R}}_{0}\end{document}. is higher than 1, genetic improvement of R0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}R0{\text{R}}_{0}\end{document} can reduce expenditures on vaccination if vaccination induces herd immunity, or it can reduce production losses due to disease. When vaccination is used to achieve herd immunity, expenditures are proportional to the critical vaccination coverage, which decreases with R0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}R0{\text{R}}_{0}\end{document}. The effect of R0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}R0{\text{R}}_{0}\end{document} on losses is considered separately for epidemic and endemic disease. Losses for epidemic diseases are proportional to the probability and size of major epidemics. Losses for endemic diseases are proportional to the infected fraction of the population at the endemic equilibrium.ResultsWhen genetic improvement reduces expenditures on vaccination, expenditures decrease with R0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}R0{\text{R}}_{0}\end{document} at an increasing rate. When genetic improvement reduces losses in epidemic or endemic diseases, losses decrease with R0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}R0{\text{R}}_{0}\end{document} at an increasing rate. Hence, in all cases, the economic value of R0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}R0{\text{R}}_{0}\end{document} increases as R0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}R0{\text{R}}_{0}\end{document} decreases towards 1.DiscussionR0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}R0{\text{R}}_{0}\end{document} and its economic value are more informative for potential benefits of genetic improvement than heritability estimates for survival after a disease challenge. In livestock, the potential for genetic improvement is small for epidemic microparasitic diseases, where disease control measures limit possibilities for phenotyping. This is not an issue in aquaculture, where controlled challenge tests are performed in dedicated facilities. If genetic evaluations include infectivity, genetic gain in R0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}R0{\text{R}}_{0}\end{document} can be accelerated but this would require different testing designs.ConclusionsWhen R0≤1\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}R01{\text{R}}_{0} \le 1\end{document}, its economic value is zero. The economic value of R0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}R0{\text{R}}_{0}\end{document} is highest at low values of R0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}R0{\text{R}}_{0}\end{document} and approaches zero at high values of R0\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}R0{\text{R}}_{0}\end{document}

    Response to mass selection when the genotype by environment interaction is modelled as a linear reaction norm

    Get PDF
    A breeding goal accounting for the effects of genotype by environment interaction (G × E) has to define not only traits but also the environment in which those traits are to be improved. The aim of this study was to predict the selection response in the coefficients of a linear reaction norm, and response in average phenotypic value in any environment, when mass selection is applied to a trait where G × E is modelled as a linear reaction norm. The optimum environment in which to test the selection candidates for a given breeding objective was derived. Optimisation of the selection environment can be used as a means to either maximise genetic progress in a certain response environment, to keep the change in environmental sensitivity at a desired rate, or to reduce the proportion of animals performing below an acceptance level. The results showed that the optimum selection environment is not always equal to the environment in which the response is to be realised, but depends on the degree of G × E (determined by the ratio of variances in slope and level of a linear reaction norm), the correlation between level and slope, and the heritability of the trait

    A note on genetic parameters and accuracy of estimated breeding values in honey bees

    Get PDF
    International audienceAbstractBackgroundIn honey bees, observations are usually made on colonies. The phenotype of a colony is affected by the average breeding value for the worker effect of the thousands of workers in the colony (the worker group) and by the breeding value for the queen effect of the queen of the colony. Because the worker group consists of multiple individuals, interpretation of the variance components and heritabilities of phenotypes observed on the colony and of the accuracy of selection is not straightforward. The additive genetic variance among worker groups depends on the additive genetic relationship between the drone-producing queens (DPQ) that produce the drones that mate with the queen.ResultsHere, we clarify how the relatedness between DPQ affects phenotypic variance, heritability and accuracy of the estimated breeding values of replacement queens. Second, we use simulation to investigate the effect of assumptions about the relatedness between DPQ in the base population on estimates of genetic parameters. Relatedness between DPQ in the base generation may differ considerably between populations because of their history.ConclusionsOur results show that estimates of (co)variance components and derived genetic parameters were seriously biased (25% too high or too low) when assumptions on the relationship between DPQ in the statistical analysis did not agree with reality

    Application of plasmonic nanomaterials in nanomedicine

    Get PDF
    Plasmonic nanoparticles are being researched as a noninvasive tool for ultrasensitive diagnostic, spectroscopic and, recently, therapeutic technologies. With particular antibody coatings on nanoparticles, they attach to the abnormal cells of interest (cancer or otherwise). Once attached, nanoparticles can be activated/heated with UV/visible/IR, RF or X-ray pulses, damaging the surrounding area of the abnormal cell to the point of death. Here, we describe an integrated approach to improved plasmonic therapy composed of nanomaterial optimization and the development of a theory for selective radiation nanophotothermolysis of abnormal biological cells with gold nanoparticles and selfassembled nanoclusters. The theory takes into account radiation-induced linear and nonlinear synergistic effects in biological cells containing nanostructures, with focus on optical, thermal, bubble formation and nanoparticle explosion phenomena. On the basis of the developed models, we discuss new ideas and new dynamic modes for cancer treatment by radiation activated nanoheaters, which involve nanocluster aggregation in living cells, microbubbles overlapping around laser-heated intracellular nanoparticles/ clusters, and laser thermal explosion mode of single nanoparticles (‘nanobombs’) delivered to the cells. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/2058

    Selection for uniformity in livestock by exploiting genetic heterogeneity of residual variance

    Get PDF
    In some situations, it is worthwhile to change not only the mean, but also the variability of traits by selection. Genetic variation in residual variance may be utilised to improve uniformity in livestock populations by selection. The objective was to investigate the effects of genetic parameters, breeding goal, number of progeny per sire and breeding scheme on selection responses in mean and variance when applying index selection. Genetic parameters were obtained from the literature. Economic values for the mean and variance were derived for some standard non-linear profit equations, e.g. for traits with an intermediate optimum. The economic value of variance was in most situations negative, indicating that selection for reduced variance increases profit. Predicted responses in residual variance after one generation of selection were large, in some cases when the number of progeny per sire was at least 50, by more than 10% of the current residual variance. Progeny testing schemes were more efficient than sib-testing schemes in decreasing residual variance. With optimum traits, selection pressure shifts gradually from the mean to the variance when approaching the optimum. Genetic improvement of uniformity is particularly interesting for traits where the current population mean is near an intermediate optimum

    Genetic parameters and genomic breeding values for digital dermatitis in Holstein Friesian dairy cattle: host susceptibility, infectivity and the basic reproduction ratio

    Get PDF
    International audienceBackground : For infectious diseases, the probability that an animal gets infected depends on its own susceptibility, and on the number of infectious herd mates and their infectivity. Together with the duration of the infectious period, susceptibility and infectivity determine the basic reproduction ratio of the disease ( R0 ). R0 is the average number of secondary cases caused by a typical infectious individual in an otherwise uninfected population. An infectious disease dies out when R0 is lower than 1. Thus, breeding strategies that aim at reducing disease prevalence should focus on reducing R0 , preferably to a value lower than 1. In animal breeding, however, R0 has received little attention. Here, we estimate the additive genetic variance in host susceptibility, host infectivity, and R0 for the endemic claw disease digital dermatitis (DD) in Holstein Friesian dairy cattle, and estimate genomic breeding values (GEBV ) for these traits. We recorded DD disease status of both hind claws of 1513 cows from 12 Dutch dairy farms, every 2 weeks, 11 times. The genotype data consisted of 75,904 single nucleotide polymorphisms (SNPs) for 1401 of the cows. We modelled the probability that a cow got infected between recordings, and compared four generalized linear mixed models. All models included a genetic effect for susceptibility; Models 2 and 4 also included a genetic effect for infectivity, while Models 1 and 2 included a farm*period interaction. We corrected for variation in exposure to infectious herd mates via an offset.Results : GEBV for R0 from the model that included genetic effects for susceptibility only had an accuracy of ~ 0.39 based on cross-validation between farms, which is very high given the limited amount of data and the complexity of the trait. Models with a genetic effect for infectivity showed a larger bias, but also a slightly higher accuracy of GEBV. Additive genetic standard deviation for R0 was large, i.e. ~ 1.17, while the mean R0 was 2.36.Conclusions : GEBV for R0 showed substantial variation. The mean R0 was only about one genetic standard deviation greater than 1. These results suggest that lowering DD prevalence by selective breeding is promising

    A model to estimate effects of SNPs on host susceptibility and infectivity for an endemic infectious disease

    Get PDF
    International audienceAbstractBackgroundInfectious diseases in farm animals affect animal health, decrease animal welfare and can affect human health. Selection and breeding of host individuals with desirable traits regarding infectious diseases can help to fight disease transmission, which is affected by two types of (genetic) traits: host susceptibility and host infectivity. Quantitative genetic studies on infectious diseases generally connect an individual’s disease status to its own genotype, and therefore capture genetic effects on susceptibility only. However, they usually ignore variation in exposure to infectious herd mates, which may limit the accuracy of estimates of genetic effects on susceptibility. Moreover, genetic effects on infectivity will exist as well. Thus, to design optimal breeding strategies, it is essential that genetic effects on infectivity are quantified. Given the potential importance of genetic effects on infectivity, we set out to develop a model to estimate the effect of single nucleotide polymorphisms (SNPs) on both host susceptibility and host infectivity. To evaluate the quality of the resulting SNP effect estimates, we simulated an endemic disease in 10 groups of 100 individuals, and recorded time-series data on individual disease status. We quantified bias and precision of the estimates for different sizes of SNP effects, and identified the optimum recording interval when the number of records is limited.ResultsWe present a generalized linear mixed model to estimate the effect of SNPs on both host susceptibility and host infectivity. SNP effects were on average slightly underestimated, i.e. estimates were conservative. Estimates were less precise for infectivity than for susceptibility. Given our sample size, the power to estimate SNP effects for susceptibility was 100% for differences between genotypes of a factor 1.56 or more, and was higher than 60% for infectivity for differences between genotypes of a factor 4 or more. When disease status was recorded 11 times on each animal, the optimal recording interval was 25 to 50% of the average infectious period.ConclusionsOur model was able to estimate genetic effects on susceptibility and infectivity. In future genome-wide association studies, it may serve as a starting point to identify genes that affect disease transmission and disease prevalence

    The early-life environment of a pig shapes the phenotypes of its social partners in adulthood

    Get PDF
    Social interactions among individuals are abundant, both in natural and domestic populations, and may affect phenotypes of individuals. Recent research has demonstrated that the social effect of an individual on the phenotype of its social partners may have a genetic component, known as an indirect genetic effect (IGE). Little is known, however, of nongenetic factors underlying such social effects. Early-life environments often have large effects on phenotypes of the individuals themselves later in life. Offspring development in many mammalian species, for example, depends on interactions with the mother and siblings. In domestic pigs, individuals sharing the same juvenile environment develop similar body weight later in life. We, therefore, hypothesized that offspring originating from the same early-life environment also develop common social skills that generate early-life social effects (ELSEs) that affect the phenotypes of their social partners later in life. We, therefore, quantified IGEs and ELSEs on growth in domestic pigs. Results show that individuals from the same early-life environment express similar social effects on the growth of their social partners, and that such ELSEs shape the growth rate of social partners more than IGEs. Thus, the social skills that individuals develop in early life have a long-lasting impact on the phenotypes of social partners. Early-life and genetic social effects were independent of the corresponding direct effects of offspring on their own growth, indicating that individuals may enhance the growth of their social partners without a personal cost. Our findings also illustrate how research devoted to quantifying IGEs may miss nongenetic and potentially confounded social mechanisms which may bias the estimates of IGEs

    Indirect Genetic Effects and the Spread of Infectious Disease: Are We Capturing the Full Heritable Variation Underlying Disease Prevalence?

    Get PDF
    Reducing disease prevalence through selection for host resistance offers a desirable alternative to chemical treatment. Selection for host resistance has proven difficult, however, due to low heritability estimates. These low estimates may be caused by a failure to capture all the relevant genetic variance in disease resistance, as genetic analysis currently is not taylored to estimate genetic variation in infectivity. Host infectivity is the propensity of transmitting infection upon contact with a susceptible individual, and can be regarded as an indirect effect to disease status. It may be caused by a combination of physiological and behavioural traits. Though genetic variation in infectivity is difficult to measure directly, Indirect Genetic Effect (IGE) models, also referred to as associative effects or social interaction models, allow the estimation of this variance from more readily available binary disease data (infected/non-infected). We therefore generated binary disease data from simulated populations with known amounts of variation in susceptibility and infectivity to test the adequacy of traditional and IGE models. Our results show that a conventional model fails to capture the genetic variation in infectivity inherent in populations with simulated infectivity. An IGE model, on the other hand, does capture some of the variation in infectivity. Comparison with expected genetic variance suggests that there is scope for further methodological improvement, and that potential responses to selection may be greater than values presented here. Nonetheless, selection using an index of estimated direct and indirect breeding values was shown to have a greater genetic selection differential and reduced future disease risk than traditional selection for resistance only. These findings suggest that if genetic variation in infectivity substantially contributes to disease transmission, then breeding designs which explicitly incorporate IGEs might help reduce disease prevalence

    Effects of data structure on the estimation of covariance functions to describe genotype by environment interactions in a reaction norm model

    Get PDF
    Covariance functions have been proposed to predict breeding values and genetic (co)variances as a function of phenotypic within herd-year averages (environmental parameters) to include genotype by environment interaction. The objective of this paper was to investigate the influence of definition of environmental parameters and non-random use of sires on expected breeding values and estimated genetic variances across environments. Breeding values were simulated as a linear function of simulated herd effects. The definition of environmental parameters hardly influenced the results. In situations with random use of sires, estimated genetic correlations between the trait expressed in different environments were 0.93, 0.93 and 0.97 while simulated at 0.89 and estimated genetic variances deviated up to 30% from the simulated values. Non random use of sires, poor genetic connectedness and small herd size had a large impact on the estimated covariance functions, expected breeding values and calculated environmental parameters. Estimated genetic correlations between a trait expressed in different environments were biased upwards and breeding values were more biased when genetic connectedness became poorer and herd composition more diverse. The best possible solution at this stage is to use environmental parameters combining large numbers of animals per herd, while losing some information on genotype by environment interaction in the data
    corecore