45 research outputs found

    Studying the effect of chloroquine on sporozoite-induced protection and immune responses in Plasmodium berghei malaria

    Get PDF
    BACKGROUND Sporozoite immunization of animals and humans under a chemo-prophylactic cover of chloroquine (CPS-CQ) efficiently induces sterile protection against malaria. In humans, CPS-CQ is strikingly more efficient than immunization with radiation attenuated sporozoites (RAS), raising the hypothesis that this might be partially due to CQ. Chloroquine, an established anti-malarial drug, is also well known for its immune modulating properties including improvement of cross-presentation. The aim of this study was to investigate whether co-administration of CQ during sporozoite immunization improves cellular responses and protective efficacy in Plasmodium berghei models. METHODS A number of experiments in selected complimentary P. berghei murine models in Balb/cByJ and C57BL/6j mice was performed. First, the effect of CQ administration on the induction of protection and immune responses by RAS immunization was studied. Next, the effect of CQ on the induction of circumsporozoite (CS) protein-specific CD8(+) T cells by immunization with P. berghei parasites expressing a mutant CS protein was investigated. Finally, a direct comparison of CPS-CQ to CPS with mefloquine (MQ), an anti-malarial with little known immune modulating effects, was performed. RESULTS When CQ was co-administered during immunization with graded numbers of RAS, this did not lead to an increase in frequencies of total memory CD8(+) T cells or CS protein-specific CD8(+) T cells. Also parasite-specific cytokine production and protection remained unaltered. Replacement of CQ by MQ for CPS immunization resulted in significantly reduced percentages of IFNγ producing memory T cells in the liver (p = 0.01), but similar protection. CONCLUSIONS This study does not provide evidence for a direct beneficial effect of CQ on the induction of sporozoite-induced immune responses and protection in P. berghei malaria models. Alternatively, the higher efficiency of CPS compared to RAS might be explained by an indirect effect of CQ through limiting blood-stage exposure after immunization or to increased antigen exposure and, therefore, improved breadth of the immune response.EMB was supported by Top Institute Pharma (grant T4-102) and KN was supported by the NWO Mozaiek (grant no. 017.005.011)

    Whole-blood transcriptomic signatures induced during immunization by chloroquine prophylaxis and Plasmodium falciparum sporozoites

    Get PDF
    A highly effective vaccine that confers sterile protection to malaria is urgently needed. Immunization under chemoprophylaxis with sporozoites (CPS) consistently confers high levels of protection in the Controlled Human Malaria infection (CHMI) model. To provide a broad, unbiased assessment of the composition and kinetics of direct ex vivo human immune responses to CPS, we profiled whole-blood transcriptomes by RNA-seq before and during CPS immunization and following CHMI challenge. Differential expression of genes enriched in modules related to T cells, NK cells, protein synthesis, and mitochondrial processes were detected in fully protected individuals four weeks after the first immunization. Non-protected individuals demonstrated transcriptomic changes after the third immunization and the day of treatment, with upregulation of interferon and innate inflammatory genes and downregulation of B-cell signatures. Protected individuals demonstrated more significant interactions between blood transcription modules compared to non-protected individuals several weeks after the second and third immunizations. These data provide insight into the molecular and cellular basis of CPS-induced immune protection from P. falciparum infection

    Novel approaches to whole sporozoite vaccination against malaria

    Get PDF
    AbstractThe parasitic disease malaria threatens more than 3 billion people worldwide, resulting in more than 200 million clinical cases and almost 600,000 deaths annually. Vaccines remain crucial for prevention and ultimately eradication of infectious diseases and, for malaria, whole sporozoite based immunization has been shown to be the most effective in experimental settings. In addition to immunization with radiation-attenuated sporozoites, chemoprophylaxis and sporozoites (CPS) is a highly efficient strategy to induce sterile protection in humans. Genetically attenuated parasites (GAP) have demonstrated significant protection in rodent studies, and are now being advanced into clinical testing. This review describes the existing pre-clinical and clinical data on CPS and GAP, discusses recent developments and examines how to transform these immunization approaches into vaccine candidates for clinical development

    Transcriptomic evidence for modulation of host inflammatory responses during febrile Plasmodium falciparum malaria

    Get PDF
    Identifying molecular predictors and mechanisms of malaria disease is important for understanding how Plasmodium falciparum malaria is controlled. Transcriptomic studies in humans have so far been limited to retrospective analysis of blood samples from clinical cases. In this prospective, proof-of-principle study, we compared whole-blood RNA-seq profiles at pre-and post-infection time points from Malian adults who were either asymptomatic (n = 5) or febrile (n = 3) during their first seasonal PCR-positive P. falciparum infection with those from malaria-naïve Dutch adults after a single controlled human malaria infection (n = 5). Our data show a graded activation of pathways downstream of pro-inflammatory cytokines, with the highest activation in malaria-naïve Dutch individuals and significantly reduced activation in malaria-experienced Malians. Newly febrile and asymptomatic infections in Malians were statistically indistinguishable except for genes activated by pro-inflammatory cytokines. The combined data provide a molecular basis for the development of a pyrogenic threshold as individuals acquire immunity to clinical malaria

    Safety, Immunogenicity, and Protective Efficacy of Intradermal Immunization with Aseptic, Purified, Cryopreserved Plasmodium falciparum Sporozoites in Volunteers Under Chloroquine Prophylaxis

    Get PDF
    Immunization of volunteers under chloroquine prophylaxis by bites of *Plasmodium falciparum* sporozoite (PfSPZ)–infected mosquitoes induces > 90% protection against controlled human malaria infection (CHMI). We studied intradermal immunization with cryopreserved, infectious PfSPZ in volunteers taking chloroquine (PfSPZ chemoprophylaxis vaccine [CVac]). Vaccine groups 1 and 3 received 3x monthly immunizations with 7.5 x 10^4 PfSPZ. Control groups 2 and 4 received normal saline. Groups 1 and 2 underwent CHMI (#1) by mosquito bite 60 days after the third immunization. Groups 3 and 4 were boosted 168 days after the third immunization and underwent CHMI (#2) 137 days later. Vaccinees (11/20, 55%) and controls (6/10, 60%) had the same percentage of mild to moderate solicited adverse events. After CHMI #1, 8/10 vaccinees (group 1) and 5/5 controls (group 2) became parasitemic by microscopy; the two negatives were positive by quantitative real-time polymerase chain reaction (qPCR). After CHMI #2, all vaccinees in group 3 and controls in group 4 were parasitemic by qPCR. Vaccinees showed weak antibody and no detectable cellular immune responses. Intradermal immunization with up to 3 x 10^5 PfSPZ-CVac was safe, but induced only minimal immune responses and no sterile protection against Pf CHMI. INTRODUCTIO

    Modest heterologous protection after Plasmodium falciparum sporozoite immunization: a double-blind randomized controlled clinical trial.

    Get PDF
    BACKGROUND: A highly efficacious vaccine is needed for malaria control and eradication. Immunization with Plasmodium falciparum NF54 parasites under chemoprophylaxis (chemoprophylaxis and sporozoite (CPS)-immunization) induces the most efficient long-lasting protection against a homologous parasite. However, parasite genetic diversity is a major hurdle for protection against heterologous strains. METHODS: We conducted a double-blind, randomized controlled trial in 39 healthy participants of NF54-CPS immunization by bites of 45 NF54-infected (n = 24 volunteers) or uninfected mosquitoes (placebo; n = 15 volunteers) against a controlled human malaria infection with the homologous NF54 or the genetically distinct NF135.C10 and NF166.C8 clones. Cellular and humoral immune assays were performed as well as genetic characterization of the parasite clones. RESULTS: NF54-CPS immunization induced complete protection in 5/5 volunteers against NF54 challenge infection at 14 weeks post-immunization, but sterilely protected only 2/10 and 1/9 volunteers against NF135.C10 and NF166.C8 challenge infection, respectively. Post-immunization plasma showed a significantly lower capacity to block heterologous parasite development in primary human hepatocytes compared to NF54. Whole genome sequencing showed that NF135.C10 and NF166.C8 have amino acid changes in multiple antigens targeted by CPS-induced antibodies. Volunteers protected against heterologous challenge were among the stronger immune responders to in vitro parasite stimulation. CONCLUSIONS: Although highly protective against homologous parasites, NF54-CPS-induced immunity is less effective against heterologous parasite clones both in vivo and in vitro. Our data indicate that whole sporozoite-based vaccine approaches require more potent immune responses for heterologous protection. TRIAL REGISTRATION: This trial is registered in clinicaltrials.gov, under identifier NCT02098590

    Controlled human malaria infection with graded numbers of Plasmodium falciparum NF135.C10- or NF166.C8-infected mosquitoes

    Get PDF
    Controlled human malaria infections (CHMIs) with Plasmodium falciparum (Pf) parasites are well established. Exposure to five Pf (NF54)-infected Anopheles mosquitoes results in 100% infection rates in malaria-näive volunteers. Recently Pf clones NF135.C10 and NF166.C8 were generated for application in CHMIs. Here, we tested the clinical infection rates of these clones, using graded numbers of Pf-infected mosquitoes. In a double-blind randomized trial, we exposed 24 malaria-näive volunteers to bites from one, two, or five mosquitoes infected with NF135.C10 or NF166.C8. The primary endpoint was parasitemia by quantitative polymerase chain reaction. For both strains, bites by five infected mosquitoes resulted in parasitemiain4/4 volunteers; 3/4 volunteers developed parasitemia after exposure to one or two infected mosquitoes infected with either clone. The prepatent period was 7.25 ± 4.0 days (median ± range). There were no serious adverse events and comparable clinical symptoms between all groups. These data confirm the eligibility of NF135.C10 and NF166.C8 for use in CHMI studies

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.

    Get PDF
    BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. FINDINGS: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0-75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4-97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8-80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3-4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. INTERPRETATION: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D'Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK

    Get PDF
    Background A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. Methods This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. Findings Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0–75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4–97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8–80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3–4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. Interpretation ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials

    Kikuchi Disease in Children: Case Report and Review of the Literature

    No full text
    Background: Kikuchi disease (KD) is a rare and generally benign condition of uncertain etiology that presents with nonspecific symptoms including fever and cervical lymphadenopathy. Clinical presentations can vary. Here, we present an atypical case of KD in a 10-year-old girl, as well as an updated literature review of the clinical presentation, laboratory features and management of KD in children. Methods: Studies (published up until February 2020) were identified through searches of PubMed using the following search items: Kikuchi-Fujimoto disease or histiocytic necrotizing lymphadenitis or Kikuchi disease. Our primary search resulted in 1117 publications. A total of 34 publications with a total of 670 patients were included in the final analysis. Results: All children present with lymphadenopathy. Almost all (96.3%) have cervical lymphadenopathy. Fever is recorded in the majority of children (77.1%). Analysis of laboratory features found that the majority of children have leukopenia (56.0%) and a raised erythrocyte sedimentation rate (56.0%). Over 30% have a raised C-reactive protein and anemia. Other features such as leukocytosis, thrombocytopenia and antinuclear antibodies positivity are less common. KD is mostly self-limiting, but steroids, hydroxychloroquine and intravenous immunoglobulin are used in protracted courses. Their efficacy has yet to be established in clinical trials. Conclusions: The presentation of KD is variable, and there is no specific set of symptoms or laboratory features that reliably establishes the diagnosis. Thus, histopathology is crucial. Definitive evaluation and establishment of effective treatments will require future prospective research studies for a more comprehensive description of the clinical course and effects of treatment. Given the rarity of the disease, this will have to be performed in collaborative consortia
    corecore